Spaces:
Sleeping
Sleeping
import torch | |
from transformers import BertTokenizer, DistilBertForSequenceClassification | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load the trained model and tokenizer | |
try: | |
model = DistilBertForSequenceClassification.from_pretrained("./saved_model") | |
tokenizer = BertTokenizer.from_pretrained("./saved_model") | |
except Exception as e: | |
print(f"Error loading model or tokenizer: {e}") | |
exit() | |
model.to(device) | |
model.eval() | |
# Define the sentences | |
sentences = [ | |
"I am so happy today!", | |
"This is the worst day ever.", | |
"I feel so loved and appreciated.", | |
"I am really angry right now.", | |
"I am so done cant take this anymore", | |
"i have to finish this report by tomorrow but so tired", | |
"let's do it", | |
"i have got this,, yayyyy", | |
"energetic", | |
"worst tired lazy", | |
"I am feeling very sad and lonely." | |
] | |
# Define the label names | |
label_names = ["admiration", "amusement", "anger", "annoyance", "approval", "caring", "confusion", "curiosity", "desire", "disappointment", "disapproval", "disgust", "embarrassment", "excitement", "fear", "gratitude", "grief", "joy", "love", "nervousness", "optimism", "pride", "realization", "relief", "remorse", "sadness", "surprise", "neutral"] | |
def predict_emotion(sentence): | |
inputs = tokenizer(sentence, return_tensors="pt", padding="max_length", truncation=True, max_length=128) | |
inputs = {key: val.to(device) for key, val in inputs.items() if key != "token_type_ids"} | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
predicted_class = torch.argmax(outputs.logits, dim=1).cpu().numpy()[0] | |
return predicted_class, label_names[predicted_class] | |
# Predict emotions for the sentences | |
for sentence in sentences: | |
predicted_emotion, predicted_label_name = predict_emotion(sentence) | |
print(f"Predicted emotion for '{sentence}': {predicted_emotion} ({predicted_label_name})") | |