Spaces:
Sleeping
Sleeping
import torch | |
from transformers import BertTokenizer, BertForSequenceClassification, DistilBertForSequenceClassification | |
from datetime import datetime | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load the intent classifier model and tokenizer | |
num_intent_labels = 151 # Set the correct number of labels for the intent classifier | |
intent_model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=num_intent_labels) | |
intent_model.load_state_dict(torch.load("intent_classifier.pth")) | |
intent_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") | |
intent_model.to(device) | |
intent_model.eval() | |
# Load the emotions model and tokenizer | |
emotions_model = DistilBertForSequenceClassification.from_pretrained("./saved_model") | |
emotions_tokenizer = BertTokenizer.from_pretrained("./saved_model") | |
emotions_model.to(device) | |
emotions_model.eval() | |
# Define the label names for emotions | |
emotion_label_names = ["admiration", "amusement", "anger", "annoyance", "approval", "caring", "confusion", "curiosity", "desire", "disappointment", "disapproval", "disgust", "embarrassment", "excitement", "fear", "gratitude", "grief", "joy", "love", "nervousness", "optimism", "pride", "realization", "relief", "remorse", "sadness", "surprise", "neutral"] | |
def predict_intent(sentence): | |
inputs = intent_tokenizer(sentence, return_tensors="pt", padding="max_length", truncation=True, max_length=128) | |
inputs = {key: val.to(device) for key, val in inputs.items()} | |
with torch.no_grad(): | |
outputs = intent_model(**inputs) | |
predicted_class = torch.argmax(outputs.logits, dim=1).cpu().numpy()[0] | |
return predicted_class | |
def predict_emotion(sentence): | |
inputs = emotions_tokenizer(sentence, return_tensors="pt", padding="max_length", truncation=True, max_length=128) | |
inputs = {key: val.to(device) for key, val in inputs.items() if key != "token_type_ids"} | |
with torch.no_grad(): | |
outputs = emotions_model(**inputs) | |
predicted_class = torch.argmax(outputs.logits, dim=1).cpu().numpy()[0] | |
return predicted_class, emotion_label_names[predicted_class] | |
def calculate_priority_score(intent, emotion, time_remaining): | |
# Example priority score calculation | |
intent_weight = 0.4 | |
emotion_weight = 0.3 | |
time_weight = 0.3 | |
# Normalize time_remaining to a score between 0 and 1 | |
time_score = max(0, min(1, 1 - (time_remaining.total_seconds() / (24 * 3600)))) | |
# Calculate priority score | |
priority_score = (intent * intent_weight) + (emotion * emotion_weight) + (time_score * time_weight) | |
return priority_score | |
def prioritize_task(task_description, due_date_time, predicted_emotion, predicted_label_name): | |
predicted_intent = predict_intent(task_description) | |
# Calculate time remaining until the due date and time | |
due_date_time = datetime.strptime(due_date_time, "%Y-%m-%d %H:%M:%S") | |
time_remaining = due_date_time - datetime.now() | |
priority_score = calculate_priority_score(predicted_intent, predicted_emotion, time_remaining) | |
return { | |
"description": task_description, | |
"due_date_time": due_date_time, | |
"time_remaining": time_remaining, | |
"predicted_intent": predicted_intent, | |
"predicted_emotion": predicted_emotion, | |
"predicted_label_name": predicted_label_name, | |
"priority_score": priority_score | |
} | |
# Example tasks | |
tasks = [ | |
{"description": "Finish the report by tomorrow.", "due_date_time": "2025-03-02 09:00:00"}, | |
{"description": "meeting", "due_date_time": "2025-03-02 12:00:00"}, | |
{"description": "listen to music.", "due_date_time": "2025-03-02 15:00:00"}, | |
{"description": "daily linkedin queens game.", "due_date_time": "2025-03-02 18:00:00"}, | |
{"description": "prepare ppt", "due_date_time": "2025-03-02 21:00:00"} | |
] | |
# Overall emotion sentence | |
emotion_sentence = "I am feeling very tired and stressed now" | |
predicted_emotion, predicted_label_name = predict_emotion(emotion_sentence) | |
# Prioritize tasks | |
prioritized_tasks = [] | |
for task in tasks: | |
prioritized_tasks.append(prioritize_task(task["description"], task["due_date_time"], predicted_emotion, predicted_label_name)) | |
# Reorder tasks based on priority score (descending order) | |
prioritized_tasks.sort(key=lambda x: x["priority_score"], reverse=True) | |
# Print prioritized tasks | |
for task in prioritized_tasks: | |
print(f"Task Description: '{task['description']}'") | |
print(f"Due Date and Time: {task['due_date_time']}") | |
print(f"Time Remaining: {task['time_remaining']}") | |
print(f"Predicted Intent: {task['predicted_intent']}") | |
print(f"Predicted Emotion: {task['predicted_emotion']} ({task['predicted_label_name']})") | |
print(f"Priority Score: {task['priority_score']:.4f}") | |
print() | |