Spaces:
Sleeping
Sleeping
Delete predict_intent.py
Browse files- predict_intent.py +0 -48
predict_intent.py
DELETED
@@ -1,48 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from transformers import BertTokenizer, BertForSequenceClassification
|
3 |
-
from datasets import load_dataset
|
4 |
-
from collections import Counter
|
5 |
-
|
6 |
-
# Check for CUDA
|
7 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
-
|
9 |
-
# Load dataset and get correct label names
|
10 |
-
dataset = load_dataset("clinc_oos", "plus")
|
11 |
-
label_names = dataset["train"].features["intent"].names # Ensure correct order
|
12 |
-
|
13 |
-
# Debugging check
|
14 |
-
print(f"Total labels: {len(label_names)}") # Should print 151
|
15 |
-
print("Sample labels:", label_names[:10]) # Print first 10 labels
|
16 |
-
|
17 |
-
# Load the trained model
|
18 |
-
num_labels = len(label_names) # Should be 151
|
19 |
-
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=num_labels)
|
20 |
-
model.load_state_dict(torch.load("intent_classifier.pth", map_location=device))
|
21 |
-
model.to(device)
|
22 |
-
model.eval()
|
23 |
-
|
24 |
-
# Load tokenizer
|
25 |
-
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
26 |
-
|
27 |
-
def predict_intent(sentence):
|
28 |
-
inputs = tokenizer(sentence, return_tensors="pt", padding="max_length", truncation=True, max_length=128)
|
29 |
-
inputs = {key: val.to(device) for key, val in inputs.items()}
|
30 |
-
|
31 |
-
with torch.no_grad():
|
32 |
-
outputs = model(**inputs)
|
33 |
-
predicted_class = torch.argmax(outputs.logits, dim=1).cpu().numpy()[0]
|
34 |
-
|
35 |
-
if predicted_class >= len(label_names): # Prevent out-of-range errors
|
36 |
-
print(f"Warning: Predicted class {predicted_class} is out of range!")
|
37 |
-
return predicted_class, "Unknown Label"
|
38 |
-
|
39 |
-
return predicted_class, label_names[predicted_class]
|
40 |
-
|
41 |
-
# Example usage
|
42 |
-
sentence = "I need to attend a meeting but so tired but important"
|
43 |
-
predicted_intent, predicted_label_name = predict_intent(sentence)
|
44 |
-
print(f"Predicted intent for '{sentence}': {predicted_intent} ({predicted_label_name})")
|
45 |
-
|
46 |
-
# # Fix: Count labels correctly from dataset["train"]
|
47 |
-
# label_counts = Counter([label_names[label] for label in dataset["train"]["intent"]])
|
48 |
-
# print("Label distribution:", label_counts) # Print top 10 most common labels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|