Spaces:
Sleeping
Sleeping
Upload 25 files
Browse files- .env +1 -0
- .gitattributes +4 -35
- .gitignore +15 -0
- classification_report.png +3 -0
- complexity_Score_finetuned.py +273 -0
- complexity_score.py +41 -0
- confusion_matrix.png +3 -0
- download_models.py +19 -0
- emotions.py +235 -0
- emotions.txt +140 -0
- intent_classifier.py +102 -0
- intent_graphs.py +88 -0
- intent_train.txt +25 -0
- model.py +140 -0
- mood_classifier.py +92 -0
- precision_recall_curve.png +3 -0
- predict_emotions.py +48 -0
- predict_intent.py +48 -0
- requirements.txt +13 -3
- task.py +558 -0
- task_css.py +458 -0
- task_prioritizer.py +105 -0
- task_ui.py +326 -0
- test_results.csv +5428 -0
- ui.png +3 -0
.env
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
TOGETHER_API_KEY=tgp_v1_ZtXpkMMiL0mcxIemzOwQgXn53Oc5Z7UvEwkusgTqtXQ
|
.gitattributes
CHANGED
@@ -1,35 +1,4 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
classification_report.png filter=lfs diff=lfs merge=lfs -text
|
2 |
+
confusion_matrix.png filter=lfs diff=lfs merge=lfs -text
|
3 |
+
precision_recall_curve.png filter=lfs diff=lfs merge=lfs -text
|
4 |
+
ui.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.gitignore
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
*.pyc
|
3 |
+
.env
|
4 |
+
.env.local
|
5 |
+
.env.*.local
|
6 |
+
.vscode/
|
7 |
+
.idea/
|
8 |
+
.DS_Store
|
9 |
+
|
10 |
+
# Model files
|
11 |
+
saved_model/
|
12 |
+
*.pth
|
13 |
+
intent_classifier.pth
|
14 |
+
|
15 |
+
|
classification_report.png
ADDED
![]() |
Git LFS Details
|
complexity_Score_finetuned.py
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<<<<<<< HEAD
|
2 |
+
import torch
|
3 |
+
import random
|
4 |
+
import numpy as np
|
5 |
+
from tqdm import tqdm
|
6 |
+
from datasets import load_dataset
|
7 |
+
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
|
8 |
+
from torch.utils.data import DataLoader
|
9 |
+
from transformers import AdamW
|
10 |
+
from sklearn.metrics import r2_score, f1_score, mean_absolute_error
|
11 |
+
|
12 |
+
# Set random seed for reproducibility
|
13 |
+
torch.manual_seed(42)
|
14 |
+
np.random.seed(42)
|
15 |
+
random.seed(42)
|
16 |
+
|
17 |
+
# Load DEITA-Complexity dataset
|
18 |
+
dataset = load_dataset("hkust-nlp/deita-complexity-scorer-data")
|
19 |
+
val_data = dataset["validation"]
|
20 |
+
|
21 |
+
# Initialize tokenizer
|
22 |
+
tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased")
|
23 |
+
|
24 |
+
# Preprocessing function
|
25 |
+
def preprocess_function(examples):
|
26 |
+
return tokenizer(examples["input"], truncation=True, padding="max_length", max_length=128)
|
27 |
+
|
28 |
+
# Tokenize validation dataset
|
29 |
+
val_encodings = val_data.map(preprocess_function, batched=True)
|
30 |
+
|
31 |
+
# Inspect the structure of val_encodings
|
32 |
+
print("Validation Encodings Structure:")
|
33 |
+
print(val_encodings)
|
34 |
+
|
35 |
+
# Convert dataset to PyTorch format
|
36 |
+
class ComplexityDataset(torch.utils.data.Dataset):
|
37 |
+
def __init__(self, encodings):
|
38 |
+
self.encodings = encodings
|
39 |
+
|
40 |
+
def __len__(self):
|
41 |
+
return len(self.encodings['input_ids'])
|
42 |
+
|
43 |
+
def __getitem__(self, idx):
|
44 |
+
# Create a dictionary for the inputs
|
45 |
+
item = {
|
46 |
+
"input_ids": torch.tensor(self.encodings['input_ids'][idx]),
|
47 |
+
"attention_mask": torch.tensor(self.encodings['attention_mask'][idx]),
|
48 |
+
# Convert target to float if it's a string
|
49 |
+
"labels": torch.tensor(float(self.encodings['target'][idx]), dtype=torch.float) # Ensure 'target' is numeric
|
50 |
+
}
|
51 |
+
return item
|
52 |
+
|
53 |
+
val_dataset = ComplexityDataset(val_encodings)
|
54 |
+
|
55 |
+
# Load pre-trained DistilBERT model
|
56 |
+
model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=1)
|
57 |
+
|
58 |
+
# Freeze first 4 transformer layers
|
59 |
+
for layer in model.distilbert.transformer.layer[:4]:
|
60 |
+
for param in layer.parameters():
|
61 |
+
param.requires_grad = False
|
62 |
+
|
63 |
+
# Define optimizer
|
64 |
+
optimizer = AdamW(model.parameters(), lr=2e-5)
|
65 |
+
|
66 |
+
# Use GPU if available
|
67 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
68 |
+
model.to(device)
|
69 |
+
|
70 |
+
# DataLoader for batching
|
71 |
+
val_loader = DataLoader(val_dataset, batch_size=8, shuffle=False)
|
72 |
+
|
73 |
+
# Evaluation function
|
74 |
+
def evaluate_model(model, val_loader):
|
75 |
+
model.eval()
|
76 |
+
val_loss = 0.0
|
77 |
+
total_mae = 0.0
|
78 |
+
all_predictions = []
|
79 |
+
all_labels = []
|
80 |
+
|
81 |
+
with torch.no_grad():
|
82 |
+
for batch in tqdm(val_loader, desc="Evaluating", leave=False):
|
83 |
+
batch = {key: val.to(device) for key, val in batch.items()}
|
84 |
+
outputs = model(**batch)
|
85 |
+
loss = torch.nn.functional.mse_loss(outputs.logits.squeeze(), batch["labels"])
|
86 |
+
|
87 |
+
val_loss += loss.item()
|
88 |
+
total_mae += torch.nn.functional.l1_loss(outputs.logits.squeeze(), batch["labels"], reduction="sum").item()
|
89 |
+
|
90 |
+
all_predictions.extend(outputs.logits.squeeze().cpu().numpy())
|
91 |
+
all_labels.extend(batch["labels"].cpu().numpy())
|
92 |
+
|
93 |
+
avg_val_loss = val_loss / len(val_loader)
|
94 |
+
avg_val_mae = total_mae / len(val_loader.dataset)
|
95 |
+
|
96 |
+
# Calculate additional metrics
|
97 |
+
r2 = r2_score(all_labels, all_predictions)
|
98 |
+
f1 = f1_score(np.round(all_labels), np.round(all_predictions), average='weighted')
|
99 |
+
|
100 |
+
return avg_val_loss, avg_val_mae, r2, f1, all_predictions, all_labels
|
101 |
+
|
102 |
+
# Evaluate the model
|
103 |
+
val_loss, val_mae, r2, f1, predictions, labels = evaluate_model(model, val_loader)
|
104 |
+
|
105 |
+
print(f"Validation Loss = {val_loss:.4f}, Validation MAE = {val_mae:.4f}, R² Score = {r2:.4f}, F1 Score = {f1:.4f}")
|
106 |
+
|
107 |
+
# Testing the model (inference on the validation set)
|
108 |
+
def test_model(model, val_loader):
|
109 |
+
model.eval()
|
110 |
+
all_predictions = []
|
111 |
+
all_labels = []
|
112 |
+
|
113 |
+
with torch.no_grad():
|
114 |
+
for batch in tqdm(val_loader, desc="Testing", leave=False):
|
115 |
+
batch = {key: val.to(device) for key, val in batch.items()}
|
116 |
+
outputs = model(**batch)
|
117 |
+
|
118 |
+
all_predictions.extend(outputs.logits.squeeze().cpu().numpy())
|
119 |
+
all_labels.extend(batch["labels"].cpu().numpy())
|
120 |
+
|
121 |
+
return np.array(all_predictions), np.array(all_labels)
|
122 |
+
|
123 |
+
# Get predictions and labels from the test function
|
124 |
+
test_predictions, test_labels = test_model(model, val_loader)
|
125 |
+
|
126 |
+
# You can also calculate the evaluation metrics on the test predictions
|
127 |
+
test_r2 = r2_score(test_labels, test_predictions)
|
128 |
+
test_f1 = f1_score(np.round(test_labels), np.round(test_predictions), average='weighted')
|
129 |
+
|
130 |
+
print(f"Test R² Score = {test_r2:.4f}, Test F1 Score = {test_f1:.4f}")
|
131 |
+
|
132 |
+
# Save the fine-tuned model
|
133 |
+
model.save_pretrained("fine_tuned_deita_model")
|
134 |
+
tokenizer.save_pretrained("fine_tuned_deita_model")
|
135 |
+
|
136 |
+
print("✅ Evaluation and testing complete! Model saved at 'fine_tuned_deita_model'.")
|
137 |
+
=======
|
138 |
+
import torch
|
139 |
+
import random
|
140 |
+
import numpy as np
|
141 |
+
from tqdm import tqdm
|
142 |
+
from datasets import load_dataset
|
143 |
+
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
|
144 |
+
from torch.utils.data import DataLoader
|
145 |
+
from transformers import AdamW
|
146 |
+
from sklearn.metrics import r2_score, f1_score, mean_absolute_error
|
147 |
+
|
148 |
+
# Set random seed for reproducibility
|
149 |
+
torch.manual_seed(42)
|
150 |
+
np.random.seed(42)
|
151 |
+
random.seed(42)
|
152 |
+
|
153 |
+
# Load DEITA-Complexity dataset
|
154 |
+
dataset = load_dataset("hkust-nlp/deita-complexity-scorer-data")
|
155 |
+
val_data = dataset["validation"]
|
156 |
+
|
157 |
+
# Initialize tokenizer
|
158 |
+
tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased")
|
159 |
+
|
160 |
+
# Preprocessing function
|
161 |
+
def preprocess_function(examples):
|
162 |
+
return tokenizer(examples["input"], truncation=True, padding="max_length", max_length=128)
|
163 |
+
|
164 |
+
# Tokenize validation dataset
|
165 |
+
val_encodings = val_data.map(preprocess_function, batched=True)
|
166 |
+
|
167 |
+
# Inspect the structure of val_encodings
|
168 |
+
print("Validation Encodings Structure:")
|
169 |
+
print(val_encodings)
|
170 |
+
|
171 |
+
# Convert dataset to PyTorch format
|
172 |
+
class ComplexityDataset(torch.utils.data.Dataset):
|
173 |
+
def __init__(self, encodings):
|
174 |
+
self.encodings = encodings
|
175 |
+
|
176 |
+
def __len__(self):
|
177 |
+
return len(self.encodings['input_ids'])
|
178 |
+
|
179 |
+
def __getitem__(self, idx):
|
180 |
+
# Create a dictionary for the inputs
|
181 |
+
item = {
|
182 |
+
"input_ids": torch.tensor(self.encodings['input_ids'][idx]),
|
183 |
+
"attention_mask": torch.tensor(self.encodings['attention_mask'][idx]),
|
184 |
+
# Convert target to float if it's a string
|
185 |
+
"labels": torch.tensor(float(self.encodings['target'][idx]), dtype=torch.float) # Ensure 'target' is numeric
|
186 |
+
}
|
187 |
+
return item
|
188 |
+
|
189 |
+
val_dataset = ComplexityDataset(val_encodings)
|
190 |
+
|
191 |
+
# Load pre-trained DistilBERT model
|
192 |
+
model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=1)
|
193 |
+
|
194 |
+
# Freeze first 4 transformer layers
|
195 |
+
for layer in model.distilbert.transformer.layer[:4]:
|
196 |
+
for param in layer.parameters():
|
197 |
+
param.requires_grad = False
|
198 |
+
|
199 |
+
# Define optimizer
|
200 |
+
optimizer = AdamW(model.parameters(), lr=2e-5)
|
201 |
+
|
202 |
+
# Use GPU if available
|
203 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
204 |
+
model.to(device)
|
205 |
+
|
206 |
+
# DataLoader for batching
|
207 |
+
val_loader = DataLoader(val_dataset, batch_size=8, shuffle=False)
|
208 |
+
|
209 |
+
# Evaluation function
|
210 |
+
def evaluate_model(model, val_loader):
|
211 |
+
model.eval()
|
212 |
+
val_loss = 0.0
|
213 |
+
total_mae = 0.0
|
214 |
+
all_predictions = []
|
215 |
+
all_labels = []
|
216 |
+
|
217 |
+
with torch.no_grad():
|
218 |
+
for batch in tqdm(val_loader, desc="Evaluating", leave=False):
|
219 |
+
batch = {key: val.to(device) for key, val in batch.items()}
|
220 |
+
outputs = model(**batch)
|
221 |
+
loss = torch.nn.functional.mse_loss(outputs.logits.squeeze(), batch["labels"])
|
222 |
+
|
223 |
+
val_loss += loss.item()
|
224 |
+
total_mae += torch.nn.functional.l1_loss(outputs.logits.squeeze(), batch["labels"], reduction="sum").item()
|
225 |
+
|
226 |
+
all_predictions.extend(outputs.logits.squeeze().cpu().numpy())
|
227 |
+
all_labels.extend(batch["labels"].cpu().numpy())
|
228 |
+
|
229 |
+
avg_val_loss = val_loss / len(val_loader)
|
230 |
+
avg_val_mae = total_mae / len(val_loader.dataset)
|
231 |
+
|
232 |
+
# Calculate additional metrics
|
233 |
+
r2 = r2_score(all_labels, all_predictions)
|
234 |
+
f1 = f1_score(np.round(all_labels), np.round(all_predictions), average='weighted')
|
235 |
+
|
236 |
+
return avg_val_loss, avg_val_mae, r2, f1, all_predictions, all_labels
|
237 |
+
|
238 |
+
# Evaluate the model
|
239 |
+
val_loss, val_mae, r2, f1, predictions, labels = evaluate_model(model, val_loader)
|
240 |
+
|
241 |
+
print(f"Validation Loss = {val_loss:.4f}, Validation MAE = {val_mae:.4f}, R² Score = {r2:.4f}, F1 Score = {f1:.4f}")
|
242 |
+
|
243 |
+
# Testing the model (inference on the validation set)
|
244 |
+
def test_model(model, val_loader):
|
245 |
+
model.eval()
|
246 |
+
all_predictions = []
|
247 |
+
all_labels = []
|
248 |
+
|
249 |
+
with torch.no_grad():
|
250 |
+
for batch in tqdm(val_loader, desc="Testing", leave=False):
|
251 |
+
batch = {key: val.to(device) for key, val in batch.items()}
|
252 |
+
outputs = model(**batch)
|
253 |
+
|
254 |
+
all_predictions.extend(outputs.logits.squeeze().cpu().numpy())
|
255 |
+
all_labels.extend(batch["labels"].cpu().numpy())
|
256 |
+
|
257 |
+
return np.array(all_predictions), np.array(all_labels)
|
258 |
+
|
259 |
+
# Get predictions and labels from the test function
|
260 |
+
test_predictions, test_labels = test_model(model, val_loader)
|
261 |
+
|
262 |
+
# You can also calculate the evaluation metrics on the test predictions
|
263 |
+
test_r2 = r2_score(test_labels, test_predictions)
|
264 |
+
test_f1 = f1_score(np.round(test_labels), np.round(test_predictions), average='weighted')
|
265 |
+
|
266 |
+
print(f"Test R² Score = {test_r2:.4f}, Test F1 Score = {test_f1:.4f}")
|
267 |
+
|
268 |
+
# Save the fine-tuned model
|
269 |
+
model.save_pretrained("fine_tuned_deita_model")
|
270 |
+
tokenizer.save_pretrained("fine_tuned_deita_model")
|
271 |
+
|
272 |
+
print("✅ Evaluation and testing complete! Model saved at 'fine_tuned_deita_model'.")
|
273 |
+
>>>>>>> b1313c5d084e410cadf261f2fafd8929cb149a4f
|
complexity_score.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<<<<<<< HEAD
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load the tokenizer and model
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("thethinkmachine/Maxwell-Task-Complexity-Scorer-v0.2")
|
7 |
+
model = AutoModelForSequenceClassification.from_pretrained("thethinkmachine/Maxwell-Task-Complexity-Scorer-v0.2")
|
8 |
+
|
9 |
+
# Example task
|
10 |
+
task_description = "find a new theory"
|
11 |
+
|
12 |
+
# Tokenize the input
|
13 |
+
inputs = tokenizer(task_description, return_tensors="pt")
|
14 |
+
|
15 |
+
# Perform inference
|
16 |
+
with torch.no_grad():
|
17 |
+
outputs = model(**inputs)
|
18 |
+
complexity_score = torch.sigmoid(outputs.logits).item()
|
19 |
+
|
20 |
+
print(f"Task Complexity Score: {complexity_score:.4f}")
|
21 |
+
=======
|
22 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
23 |
+
import torch
|
24 |
+
|
25 |
+
# Load the tokenizer and model
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained("thethinkmachine/Maxwell-Task-Complexity-Scorer-v0.2")
|
27 |
+
model = AutoModelForSequenceClassification.from_pretrained("thethinkmachine/Maxwell-Task-Complexity-Scorer-v0.2")
|
28 |
+
|
29 |
+
# Example task
|
30 |
+
task_description = "find a new theory"
|
31 |
+
|
32 |
+
# Tokenize the input
|
33 |
+
inputs = tokenizer(task_description, return_tensors="pt")
|
34 |
+
|
35 |
+
# Perform inference
|
36 |
+
with torch.no_grad():
|
37 |
+
outputs = model(**inputs)
|
38 |
+
complexity_score = torch.sigmoid(outputs.logits).item()
|
39 |
+
|
40 |
+
print(f"Task Complexity Score: {complexity_score:.4f}")
|
41 |
+
>>>>>>> b1313c5d084e410cadf261f2fafd8929cb149a4f
|
confusion_matrix.png
ADDED
![]() |
Git LFS Details
|
download_models.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
|
4 |
+
def download_base_models():
|
5 |
+
# Create models directory
|
6 |
+
os.makedirs("pretrained_models", exist_ok=True)
|
7 |
+
|
8 |
+
print("Downloading BERT base model...")
|
9 |
+
# Download and save BERT base model
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
11 |
+
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
|
12 |
+
|
13 |
+
# Save models locally
|
14 |
+
tokenizer.save_pretrained("pretrained_models/bert-base-uncased")
|
15 |
+
model.save_pretrained("pretrained_models/bert-base-uncased")
|
16 |
+
print("Base models downloaded successfully!")
|
17 |
+
|
18 |
+
if __name__ == "__main__":
|
19 |
+
download_base_models()
|
emotions.py
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<<<<<<< HEAD
|
2 |
+
import pandas as pd
|
3 |
+
import torch
|
4 |
+
from datasets import load_dataset, Dataset
|
5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
|
6 |
+
import numpy as np
|
7 |
+
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score, classification_report
|
8 |
+
|
9 |
+
# Load dataset
|
10 |
+
dataset = load_dataset("go_emotions")
|
11 |
+
|
12 |
+
# Print dataset columns
|
13 |
+
print("Dataset Columns Before Preprocessing:", dataset["train"].column_names)
|
14 |
+
|
15 |
+
# Ensure labels exist
|
16 |
+
if "labels" not in dataset["train"].column_names:
|
17 |
+
raise KeyError("Column 'labels' is missing! Check dataset structure.")
|
18 |
+
|
19 |
+
# Load tokenizer
|
20 |
+
model_checkpoint = "distilbert-base-uncased"
|
21 |
+
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
23 |
+
|
24 |
+
# Preprocessing function (Take only the first label for single-label classification)
|
25 |
+
def preprocess_data(batch):
|
26 |
+
encoding = tokenizer(batch["text"], padding="max_length", truncation=True)
|
27 |
+
|
28 |
+
# Take only the first label (for single-label classification)
|
29 |
+
encoding["labels"] = batch["labels"][0] if batch["labels"] else 0 # Default to 0 if empty
|
30 |
+
return encoding
|
31 |
+
|
32 |
+
# Tokenize dataset
|
33 |
+
encoded_dataset = dataset.map(preprocess_data, batched=False, remove_columns=["text"])
|
34 |
+
|
35 |
+
# Set format for PyTorch
|
36 |
+
encoded_dataset.set_format("torch")
|
37 |
+
|
38 |
+
# Load model for single-label classification (28 classes)
|
39 |
+
num_labels = 28 # Change based on dataset labels
|
40 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=num_labels)
|
41 |
+
|
42 |
+
# Training arguments
|
43 |
+
args = TrainingArguments(
|
44 |
+
output_dir="./results",
|
45 |
+
eval_strategy="epoch",
|
46 |
+
save_strategy="epoch",
|
47 |
+
save_total_limit=1,
|
48 |
+
logging_strategy="no",
|
49 |
+
per_device_train_batch_size=32, # Increase batch size
|
50 |
+
per_device_eval_batch_size=32,
|
51 |
+
num_train_epochs=2, # Reduce epochs
|
52 |
+
weight_decay=0.01,
|
53 |
+
load_best_model_at_end=True,
|
54 |
+
fp16=True, # Mixed precision for speedup
|
55 |
+
gradient_accumulation_steps=2, # Helps with large batch sizes
|
56 |
+
)
|
57 |
+
|
58 |
+
|
59 |
+
# Compute metrics function
|
60 |
+
def compute_metrics(eval_pred):
|
61 |
+
logits, labels = eval_pred
|
62 |
+
|
63 |
+
# Convert logits to class predictions
|
64 |
+
predictions = np.argmax(logits, axis=-1)
|
65 |
+
|
66 |
+
accuracy = accuracy_score(labels, predictions)
|
67 |
+
f1 = f1_score(labels, predictions, average="weighted")
|
68 |
+
|
69 |
+
return {"accuracy": accuracy, "f1": f1}
|
70 |
+
|
71 |
+
# Initialize Trainer
|
72 |
+
trainer = Trainer(
|
73 |
+
model=model,
|
74 |
+
args=args,
|
75 |
+
train_dataset=encoded_dataset["train"],
|
76 |
+
eval_dataset=encoded_dataset["validation"],
|
77 |
+
compute_metrics=compute_metrics
|
78 |
+
)
|
79 |
+
|
80 |
+
# Train model
|
81 |
+
trainer.train()
|
82 |
+
print("Training completed!")
|
83 |
+
|
84 |
+
# Save model and tokenizer
|
85 |
+
model.save_pretrained("./saved_model")
|
86 |
+
tokenizer.save_pretrained("./saved_model")
|
87 |
+
print("Model and tokenizer saved!")
|
88 |
+
|
89 |
+
# ====== Evaluation on Test Set ======
|
90 |
+
print("\nEvaluating model on test set...")
|
91 |
+
|
92 |
+
# Get test dataset
|
93 |
+
test_dataset = encoded_dataset["test"]
|
94 |
+
|
95 |
+
# Make predictions
|
96 |
+
predictions = trainer.predict(test_dataset)
|
97 |
+
logits = predictions.predictions
|
98 |
+
|
99 |
+
# Convert logits to class predictions
|
100 |
+
y_pred = np.argmax(logits, axis=-1)
|
101 |
+
y_true = test_dataset["labels"].numpy()
|
102 |
+
|
103 |
+
# Compute accuracy and F1-score
|
104 |
+
accuracy = accuracy_score(y_true, y_pred)
|
105 |
+
f1 = f1_score(y_true, y_pred, average="weighted")
|
106 |
+
|
107 |
+
# Print evaluation results
|
108 |
+
print("\nEvaluation Results:")
|
109 |
+
print(f"Test Accuracy: {accuracy:.4f}")
|
110 |
+
print(f"Test F1 Score: {f1:.4f}")
|
111 |
+
|
112 |
+
# Print classification report
|
113 |
+
print("\nClassification Report:\n", classification_report(y_true, y_pred))
|
114 |
+
|
115 |
+
# Save test results
|
116 |
+
pd.DataFrame({"true_labels": y_true.tolist(), "predicted_labels": y_pred.tolist()}).to_csv("test_results.csv", index=False)
|
117 |
+
print("Test results saved to 'test_results.csv'!")
|
118 |
+
=======
|
119 |
+
import pandas as pd
|
120 |
+
import torch
|
121 |
+
from datasets import load_dataset, Dataset
|
122 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
|
123 |
+
import numpy as np
|
124 |
+
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score, classification_report
|
125 |
+
|
126 |
+
# Load dataset
|
127 |
+
dataset = load_dataset("go_emotions")
|
128 |
+
|
129 |
+
# Print dataset columns
|
130 |
+
print("Dataset Columns Before Preprocessing:", dataset["train"].column_names)
|
131 |
+
|
132 |
+
# Ensure labels exist
|
133 |
+
if "labels" not in dataset["train"].column_names:
|
134 |
+
raise KeyError("Column 'labels' is missing! Check dataset structure.")
|
135 |
+
|
136 |
+
# Load tokenizer
|
137 |
+
model_checkpoint = "distilbert-base-uncased"
|
138 |
+
|
139 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
140 |
+
|
141 |
+
# Preprocessing function (Take only the first label for single-label classification)
|
142 |
+
def preprocess_data(batch):
|
143 |
+
encoding = tokenizer(batch["text"], padding="max_length", truncation=True)
|
144 |
+
|
145 |
+
# Take only the first label (for single-label classification)
|
146 |
+
encoding["labels"] = batch["labels"][0] if batch["labels"] else 0 # Default to 0 if empty
|
147 |
+
return encoding
|
148 |
+
|
149 |
+
# Tokenize dataset
|
150 |
+
encoded_dataset = dataset.map(preprocess_data, batched=False, remove_columns=["text"])
|
151 |
+
|
152 |
+
# Set format for PyTorch
|
153 |
+
encoded_dataset.set_format("torch")
|
154 |
+
|
155 |
+
# Load model for single-label classification (28 classes)
|
156 |
+
num_labels = 28 # Change based on dataset labels
|
157 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=num_labels)
|
158 |
+
|
159 |
+
# Training arguments
|
160 |
+
args = TrainingArguments(
|
161 |
+
output_dir="./results",
|
162 |
+
eval_strategy="epoch",
|
163 |
+
save_strategy="epoch",
|
164 |
+
save_total_limit=1,
|
165 |
+
logging_strategy="no",
|
166 |
+
per_device_train_batch_size=32, # Increase batch size
|
167 |
+
per_device_eval_batch_size=32,
|
168 |
+
num_train_epochs=2, # Reduce epochs
|
169 |
+
weight_decay=0.01,
|
170 |
+
load_best_model_at_end=True,
|
171 |
+
fp16=True, # Mixed precision for speedup
|
172 |
+
gradient_accumulation_steps=2, # Helps with large batch sizes
|
173 |
+
)
|
174 |
+
|
175 |
+
|
176 |
+
# Compute metrics function
|
177 |
+
def compute_metrics(eval_pred):
|
178 |
+
logits, labels = eval_pred
|
179 |
+
|
180 |
+
# Convert logits to class predictions
|
181 |
+
predictions = np.argmax(logits, axis=-1)
|
182 |
+
|
183 |
+
accuracy = accuracy_score(labels, predictions)
|
184 |
+
f1 = f1_score(labels, predictions, average="weighted")
|
185 |
+
|
186 |
+
return {"accuracy": accuracy, "f1": f1}
|
187 |
+
|
188 |
+
# Initialize Trainer
|
189 |
+
trainer = Trainer(
|
190 |
+
model=model,
|
191 |
+
args=args,
|
192 |
+
train_dataset=encoded_dataset["train"],
|
193 |
+
eval_dataset=encoded_dataset["validation"],
|
194 |
+
compute_metrics=compute_metrics
|
195 |
+
)
|
196 |
+
|
197 |
+
# Train model
|
198 |
+
trainer.train()
|
199 |
+
print("Training completed!")
|
200 |
+
|
201 |
+
# Save model and tokenizer
|
202 |
+
model.save_pretrained("./saved_model")
|
203 |
+
tokenizer.save_pretrained("./saved_model")
|
204 |
+
print("Model and tokenizer saved!")
|
205 |
+
|
206 |
+
# ====== Evaluation on Test Set ======
|
207 |
+
print("\nEvaluating model on test set...")
|
208 |
+
|
209 |
+
# Get test dataset
|
210 |
+
test_dataset = encoded_dataset["test"]
|
211 |
+
|
212 |
+
# Make predictions
|
213 |
+
predictions = trainer.predict(test_dataset)
|
214 |
+
logits = predictions.predictions
|
215 |
+
|
216 |
+
# Convert logits to class predictions
|
217 |
+
y_pred = np.argmax(logits, axis=-1)
|
218 |
+
y_true = test_dataset["labels"].numpy()
|
219 |
+
|
220 |
+
# Compute accuracy and F1-score
|
221 |
+
accuracy = accuracy_score(y_true, y_pred)
|
222 |
+
f1 = f1_score(y_true, y_pred, average="weighted")
|
223 |
+
|
224 |
+
# Print evaluation results
|
225 |
+
print("\nEvaluation Results:")
|
226 |
+
print(f"Test Accuracy: {accuracy:.4f}")
|
227 |
+
print(f"Test F1 Score: {f1:.4f}")
|
228 |
+
|
229 |
+
# Print classification report
|
230 |
+
print("\nClassification Report:\n", classification_report(y_true, y_pred))
|
231 |
+
|
232 |
+
# Save test results
|
233 |
+
pd.DataFrame({"true_labels": y_true.tolist(), "predicted_labels": y_pred.tolist()}).to_csv("test_results.csv", index=False)
|
234 |
+
print("Test results saved to 'test_results.csv'!")
|
235 |
+
>>>>>>> b1313c5d084e410cadf261f2fafd8929cb149a4f
|
emotions.txt
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<<<<<<< HEAD
|
2 |
+
PS C:\Users\NAVYA\Documents\moodify> python emotions.py
|
3 |
+
2025-02-26 20:38:46.440320: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
|
4 |
+
2025-02-26 20:38:47.658979: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
|
5 |
+
WARNING:tensorflow:From C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\tf_keras\src\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead.
|
6 |
+
|
7 |
+
Dataset Columns Before Preprocessing: ['text', 'labels', 'id']
|
8 |
+
Map: 100%|█████████████████████████████████████████████████████████████████████████████████████| 43410/43410 [00:22<00:00, 1958.97 examples/s]
|
9 |
+
Map: 100%|███████████████████████████████████████████████████████████████████████████████████████| 5426/5426 [00:03<00:00, 1796.32 examples/s]
|
10 |
+
Map: 100%|███████████████████████████████████████████████████████████████████████████████████████| 5427/5427 [00:02<00:00, 1936.32 examples/s]
|
11 |
+
Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight']
|
12 |
+
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
|
13 |
+
{'eval_loss': 1.414624571800232, 'eval_accuracy': 0.5748249170659786, 'eval_f1': 0.55625264544128, 'eval_runtime': 37.1848, 'eval_samples_per_second': 145.92, 'eval_steps_per_second': 4.572, 'epoch': 1.0}
|
14 |
+
{'eval_loss': 1.3568519353866577, 'eval_accuracy': 0.5895687430888316, 'eval_f1': 0.5727110766843768, 'eval_runtime': 38.7582, 'eval_samples_per_second': 139.996, 'eval_steps_per_second': 4.386, 'epoch': 2.0}
|
15 |
+
{'train_runtime': 6368.0108, 'train_samples_per_second': 13.634, 'train_steps_per_second': 0.213, 'train_loss': 1.50392983585684, 'epoch': 2.0}
|
16 |
+
100%|███████████████████████████████████████████████████████████████████████████████████████████████████| 1356/1356 [1:46:08<00:00, 4.70s/it]
|
17 |
+
Training completed!
|
18 |
+
Model and tokenizer saved!
|
19 |
+
|
20 |
+
Evaluating model on test set...
|
21 |
+
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████| 170/170 [00:38<00:00, 4.43it/s]
|
22 |
+
|
23 |
+
Evaluation Results:
|
24 |
+
Test Accuracy: 0.5779
|
25 |
+
Test F1 Score: 0.5608
|
26 |
+
C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\metrics\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
|
27 |
+
_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
|
28 |
+
C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\metrics\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
|
29 |
+
_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
|
30 |
+
C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\metrics\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
|
31 |
+
_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
|
32 |
+
|
33 |
+
Classification Report:
|
34 |
+
precision recall f1-score support
|
35 |
+
|
36 |
+
0 0.65 0.74 0.69 504
|
37 |
+
1 0.73 0.86 0.79 252
|
38 |
+
2 0.47 0.47 0.47 197
|
39 |
+
3 0.32 0.20 0.25 286
|
40 |
+
4 0.54 0.35 0.42 318
|
41 |
+
5 0.46 0.40 0.43 114
|
42 |
+
6 0.47 0.39 0.43 139
|
43 |
+
7 0.43 0.61 0.51 233
|
44 |
+
8 0.60 0.42 0.49 74
|
45 |
+
9 0.38 0.22 0.28 127
|
46 |
+
10 0.42 0.37 0.39 220
|
47 |
+
11 0.48 0.40 0.44 84
|
48 |
+
12 0.71 0.40 0.51 30
|
49 |
+
13 0.48 0.39 0.43 84
|
50 |
+
14 0.59 0.70 0.64 74
|
51 |
+
15 0.84 0.83 0.83 288
|
52 |
+
16 0.00 0.00 0.00 6
|
53 |
+
17 0.52 0.56 0.54 116
|
54 |
+
18 0.65 0.82 0.72 169
|
55 |
+
19 0.00 0.00 0.00 16
|
56 |
+
20 0.56 0.49 0.52 120
|
57 |
+
21 0.00 0.00 0.00 8
|
58 |
+
22 0.47 0.08 0.14 109
|
59 |
+
23 0.00 0.00 0.00 7
|
60 |
+
24 0.57 0.74 0.64 46
|
61 |
+
25 0.55 0.47 0.51 108
|
62 |
+
26 0.42 0.48 0.44 92
|
63 |
+
27 0.60 0.71 0.65 1606
|
64 |
+
|
65 |
+
accuracy 0.58 5427
|
66 |
+
macro avg 0.46 0.43 0.44 5427
|
67 |
+
weighted avg 0.56 0.58 0.56 5427
|
68 |
+
|
69 |
+
Test results saved to 'test_results.csv'!
|
70 |
+
=======
|
71 |
+
PS C:\Users\NAVYA\Documents\moodify> python emotions.py
|
72 |
+
2025-02-26 20:38:46.440320: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
|
73 |
+
2025-02-26 20:38:47.658979: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
|
74 |
+
WARNING:tensorflow:From C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\tf_keras\src\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead.
|
75 |
+
|
76 |
+
Dataset Columns Before Preprocessing: ['text', 'labels', 'id']
|
77 |
+
Map: 100%|█████████████████████████████████████████████████████████████████████████████████████| 43410/43410 [00:22<00:00, 1958.97 examples/s]
|
78 |
+
Map: 100%|███████████████████████████████████████████████████████████████████████████████████████| 5426/5426 [00:03<00:00, 1796.32 examples/s]
|
79 |
+
Map: 100%|███████████████████████████████████████████████████████████████████████████████████████| 5427/5427 [00:02<00:00, 1936.32 examples/s]
|
80 |
+
Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight']
|
81 |
+
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
|
82 |
+
{'eval_loss': 1.414624571800232, 'eval_accuracy': 0.5748249170659786, 'eval_f1': 0.55625264544128, 'eval_runtime': 37.1848, 'eval_samples_per_second': 145.92, 'eval_steps_per_second': 4.572, 'epoch': 1.0}
|
83 |
+
{'eval_loss': 1.3568519353866577, 'eval_accuracy': 0.5895687430888316, 'eval_f1': 0.5727110766843768, 'eval_runtime': 38.7582, 'eval_samples_per_second': 139.996, 'eval_steps_per_second': 4.386, 'epoch': 2.0}
|
84 |
+
{'train_runtime': 6368.0108, 'train_samples_per_second': 13.634, 'train_steps_per_second': 0.213, 'train_loss': 1.50392983585684, 'epoch': 2.0}
|
85 |
+
100%|███████████████████████████████████████████████████████████████████████████████████████████████████| 1356/1356 [1:46:08<00:00, 4.70s/it]
|
86 |
+
Training completed!
|
87 |
+
Model and tokenizer saved!
|
88 |
+
|
89 |
+
Evaluating model on test set...
|
90 |
+
100%|██████████████████████████████████���████████████████████████████████████████████████████████████████████| 170/170 [00:38<00:00, 4.43it/s]
|
91 |
+
|
92 |
+
Evaluation Results:
|
93 |
+
Test Accuracy: 0.5779
|
94 |
+
Test F1 Score: 0.5608
|
95 |
+
C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\metrics\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
|
96 |
+
_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
|
97 |
+
C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\metrics\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
|
98 |
+
_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
|
99 |
+
C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\metrics\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
|
100 |
+
_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
|
101 |
+
|
102 |
+
Classification Report:
|
103 |
+
precision recall f1-score support
|
104 |
+
|
105 |
+
0 0.65 0.74 0.69 504
|
106 |
+
1 0.73 0.86 0.79 252
|
107 |
+
2 0.47 0.47 0.47 197
|
108 |
+
3 0.32 0.20 0.25 286
|
109 |
+
4 0.54 0.35 0.42 318
|
110 |
+
5 0.46 0.40 0.43 114
|
111 |
+
6 0.47 0.39 0.43 139
|
112 |
+
7 0.43 0.61 0.51 233
|
113 |
+
8 0.60 0.42 0.49 74
|
114 |
+
9 0.38 0.22 0.28 127
|
115 |
+
10 0.42 0.37 0.39 220
|
116 |
+
11 0.48 0.40 0.44 84
|
117 |
+
12 0.71 0.40 0.51 30
|
118 |
+
13 0.48 0.39 0.43 84
|
119 |
+
14 0.59 0.70 0.64 74
|
120 |
+
15 0.84 0.83 0.83 288
|
121 |
+
16 0.00 0.00 0.00 6
|
122 |
+
17 0.52 0.56 0.54 116
|
123 |
+
18 0.65 0.82 0.72 169
|
124 |
+
19 0.00 0.00 0.00 16
|
125 |
+
20 0.56 0.49 0.52 120
|
126 |
+
21 0.00 0.00 0.00 8
|
127 |
+
22 0.47 0.08 0.14 109
|
128 |
+
23 0.00 0.00 0.00 7
|
129 |
+
24 0.57 0.74 0.64 46
|
130 |
+
25 0.55 0.47 0.51 108
|
131 |
+
26 0.42 0.48 0.44 92
|
132 |
+
27 0.60 0.71 0.65 1606
|
133 |
+
|
134 |
+
accuracy 0.58 5427
|
135 |
+
macro avg 0.46 0.43 0.44 5427
|
136 |
+
weighted avg 0.56 0.58 0.56 5427
|
137 |
+
|
138 |
+
Test results saved to 'test_results.csv'!
|
139 |
+
>>>>>>> b1313c5d084e410cadf261f2fafd8929cb149a4f
|
140 |
+
PS C:\Users\NAVYA\Doc
|
intent_classifier.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.optim as optim
|
4 |
+
from torch.utils.data import Dataset, DataLoader
|
5 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
6 |
+
from datasets import load_dataset
|
7 |
+
from tqdm import tqdm
|
8 |
+
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
|
9 |
+
|
10 |
+
# Check for CUDA
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
print(device)
|
13 |
+
|
14 |
+
# Load CLINC-OOS Dataset (Correct Config)
|
15 |
+
dataset = load_dataset("clinc_oos", "plus")
|
16 |
+
|
17 |
+
# Tokenizer
|
18 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
19 |
+
|
20 |
+
# Preprocess Dataset
|
21 |
+
class IntentDataset(Dataset):
|
22 |
+
def __init__(self, dataset_split):
|
23 |
+
self.texts = dataset_split["text"]
|
24 |
+
self.labels = dataset_split["intent"]
|
25 |
+
self.label_map = {label: i for i, label in enumerate(set(self.labels))} # Create label mapping
|
26 |
+
|
27 |
+
def __len__(self):
|
28 |
+
return len(self.texts)
|
29 |
+
|
30 |
+
def __getitem__(self, idx):
|
31 |
+
inputs = tokenizer(self.texts[idx], padding="max_length", truncation=True, max_length=64, return_tensors="pt")
|
32 |
+
label = self.labels[idx]
|
33 |
+
if label not in self.label_map:
|
34 |
+
raise ValueError(f"Unexpected label {label} found in dataset") # Debugging step
|
35 |
+
return {key: val.squeeze(0) for key, val in inputs.items()}, torch.tensor(self.label_map[label])
|
36 |
+
|
37 |
+
# Create Dataloaders
|
38 |
+
batch_size = 16
|
39 |
+
train_dataset = IntentDataset(dataset["train"])
|
40 |
+
test_dataset = IntentDataset(dataset["test"])
|
41 |
+
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
42 |
+
test_loader = DataLoader(test_dataset, batch_size=batch_size)
|
43 |
+
|
44 |
+
# Load Pretrained BERT Model
|
45 |
+
num_labels = len(set(dataset["train"]["intent"]))
|
46 |
+
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=num_labels).to(device)
|
47 |
+
|
48 |
+
# Loss & Optimizer
|
49 |
+
criterion = nn.CrossEntropyLoss()
|
50 |
+
optimizer = optim.AdamW(model.parameters(), lr=2e-5)
|
51 |
+
|
52 |
+
# Training Loop
|
53 |
+
num_epochs = 3
|
54 |
+
for epoch in range(num_epochs):
|
55 |
+
model.train()
|
56 |
+
total_loss = 0
|
57 |
+
correct = 0
|
58 |
+
total = 0
|
59 |
+
|
60 |
+
for batch in tqdm(train_loader, desc=f"Epoch {epoch+1}/{num_epochs} Training"):
|
61 |
+
inputs, labels = batch
|
62 |
+
inputs = {key: val.to(device) for key, val in inputs.items()}
|
63 |
+
labels = labels.to(device)
|
64 |
+
|
65 |
+
optimizer.zero_grad()
|
66 |
+
outputs = model(**inputs).logits
|
67 |
+
loss = criterion(outputs, labels)
|
68 |
+
loss.backward()
|
69 |
+
optimizer.step()
|
70 |
+
|
71 |
+
total_loss += loss.item()
|
72 |
+
correct += (outputs.argmax(dim=1) == labels).sum().item()
|
73 |
+
total += labels.size(0)
|
74 |
+
|
75 |
+
train_accuracy = correct / total
|
76 |
+
print(f"Epoch {epoch+1}/{num_epochs}, Loss: {total_loss:.4f}, Train Accuracy: {train_accuracy:.4f}")
|
77 |
+
|
78 |
+
# Evaluation on Test Set
|
79 |
+
model.eval()
|
80 |
+
all_preds, all_labels = [], []
|
81 |
+
|
82 |
+
with torch.no_grad():
|
83 |
+
for batch in tqdm(test_loader, desc="Testing"):
|
84 |
+
inputs, labels = batch
|
85 |
+
inputs = {key: val.to(device) for key, val in inputs.items()}
|
86 |
+
labels = labels.to(device)
|
87 |
+
|
88 |
+
outputs = model(**inputs).logits
|
89 |
+
preds = outputs.argmax(dim=1)
|
90 |
+
|
91 |
+
all_preds.extend(preds.cpu().numpy())
|
92 |
+
all_labels.extend(labels.cpu().numpy())
|
93 |
+
|
94 |
+
# Compute Metrics
|
95 |
+
accuracy = accuracy_score(all_labels, all_preds)
|
96 |
+
precision, recall, f1, _ = precision_recall_fscore_support(all_labels, all_preds, average="weighted")
|
97 |
+
|
98 |
+
print(f"Test Accuracy: {accuracy:.4f}")
|
99 |
+
print(f"Precision: {precision:.4f}, Recall: {recall:.4f}, F1-score: {f1:.4f}")
|
100 |
+
|
101 |
+
# Save Model
|
102 |
+
torch.save(model.state_dict(), "intent_classifier.pth")
|
intent_graphs.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import seaborn as sns
|
5 |
+
from sklearn.metrics import confusion_matrix, classification_report, precision_recall_curve
|
6 |
+
from sklearn.preprocessing import label_binarize
|
7 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
8 |
+
from datasets import load_dataset
|
9 |
+
|
10 |
+
# Check for CUDA
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
|
13 |
+
# Load dataset
|
14 |
+
dataset = load_dataset("clinc_oos", "plus")
|
15 |
+
label_names = dataset["train"].features["intent"].names # Ensure correct order
|
16 |
+
|
17 |
+
# Load model
|
18 |
+
num_labels = len(label_names)
|
19 |
+
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=num_labels)
|
20 |
+
model.load_state_dict(torch.load("intent_classifier.pth", map_location=device))
|
21 |
+
model.to(device)
|
22 |
+
model.eval()
|
23 |
+
|
24 |
+
# Load tokenizer
|
25 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
26 |
+
|
27 |
+
# Prepare data
|
28 |
+
true_labels = []
|
29 |
+
pred_labels = []
|
30 |
+
all_probs = []
|
31 |
+
|
32 |
+
for example in dataset["test"]:
|
33 |
+
sentence = example["text"]
|
34 |
+
true_label = example["intent"]
|
35 |
+
|
36 |
+
# Tokenize
|
37 |
+
inputs = tokenizer(sentence, return_tensors="pt", padding="max_length", truncation=True, max_length=128)
|
38 |
+
inputs = {key: val.to(device) for key, val in inputs.items()}
|
39 |
+
|
40 |
+
# Predict
|
41 |
+
with torch.no_grad():
|
42 |
+
outputs = model(**inputs)
|
43 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=1).cpu().numpy()[0]
|
44 |
+
predicted_class = np.argmax(probs)
|
45 |
+
|
46 |
+
# Store results
|
47 |
+
true_labels.append(true_label)
|
48 |
+
pred_labels.append(predicted_class)
|
49 |
+
all_probs.append(probs)
|
50 |
+
|
51 |
+
# Convert to numpy arrays
|
52 |
+
true_labels = np.array(true_labels)
|
53 |
+
pred_labels = np.array(pred_labels)
|
54 |
+
all_probs = np.array(all_probs)
|
55 |
+
|
56 |
+
# Compute confusion matrix
|
57 |
+
conf_matrix = confusion_matrix(true_labels, pred_labels)
|
58 |
+
|
59 |
+
# Plot confusion matrix
|
60 |
+
plt.figure(figsize=(12, 10))
|
61 |
+
sns.heatmap(conf_matrix, annot=False, fmt="d", cmap="Blues")
|
62 |
+
plt.xlabel("Predicted Label")
|
63 |
+
plt.ylabel("True Label")
|
64 |
+
plt.title("Confusion Matrix for Intent Classification")
|
65 |
+
plt.savefig("confusion_matrix.png", dpi=300, bbox_inches="tight")
|
66 |
+
plt.close()
|
67 |
+
|
68 |
+
print("Confusion matrix saved as confusion_matrix.png")
|
69 |
+
|
70 |
+
# --- Multi-Class Precision-Recall Curve ---
|
71 |
+
# Binarize true labels for multi-class PR calculation
|
72 |
+
true_labels_bin = label_binarize(true_labels, classes=np.arange(num_labels))
|
73 |
+
|
74 |
+
# Plot Precision-Recall Curve for multiple classes
|
75 |
+
plt.figure(figsize=(10, 8))
|
76 |
+
for i in range(num_labels):
|
77 |
+
precision, recall, _ = precision_recall_curve(true_labels_bin[:, i], all_probs[:, i])
|
78 |
+
plt.plot(recall, precision, lw=1, alpha=0.7, label=f"Class {i}: {label_names[i]}")
|
79 |
+
|
80 |
+
plt.xlabel("Recall")
|
81 |
+
plt.ylabel("Precision")
|
82 |
+
plt.title("Multi-Class Precision-Recall Curve")
|
83 |
+
plt.legend(loc="best", fontsize=6, ncol=2, frameon=True)
|
84 |
+
plt.grid(True)
|
85 |
+
plt.savefig("precision_recall_curve.png", dpi=300, bbox_inches="tight")
|
86 |
+
plt.close()
|
87 |
+
|
88 |
+
print("Precision-Recall curve saved as precision_recall_curve.png")
|
intent_train.txt
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
PS C:\Users\NAVYA\Documents\moodify> python intent_classifier.py
|
2 |
+
2025-02-26 00:12:11.737923: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
|
3 |
+
2025-02-26 00:12:13.232626: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
|
4 |
+
cuda
|
5 |
+
train-00000-of-00001.parquet: 100%|████████████████████████████████████████████████████████████████████████| 312k/312k [00:00<00:00, 2.83MB/s]
|
6 |
+
C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\huggingface_hub\file_download.py:142: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\Users\NAVYA\.cache\huggingface\hub\datasets--clinc_oos. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations.
|
7 |
+
To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development
|
8 |
+
warnings.warn(message)
|
9 |
+
validation-00000-of-00001.parquet: 100%|█████████████████████████████████████████████████████████████████| 77.8k/77.8k [00:00<00:00, 4.63MB/s]
|
10 |
+
test-00000-of-00001.parquet: 100%|█████████████████████████████████████████████████████████████████████████| 136k/136k [00:00<00:00, 4.81MB/s]
|
11 |
+
Generating train split: 100%|████████████████████████████████████████████████████████████████| 15250/15250 [00:00<00:00, 210143.07 examples/s]
|
12 |
+
Generating validation split: 100%|█████████████████████████████████████████████████████████████| 3100/3100 [00:00<00:00, 233598.79 examples/s]
|
13 |
+
Generating test split: 100%|███████████████████████████████████████████████████████████████████| 5500/5500 [00:00<00:00, 288149.49 examples/s]
|
14 |
+
Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight']
|
15 |
+
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
|
16 |
+
Epoch 1/3 Training: 100%|███████████████████████████████████████████████████████████████████████████████████| 954/954 [04:26<00:00, 3.57it/s]
|
17 |
+
Epoch 1/3, Loss: 3449.6031, Train Accuracy: 0.4677
|
18 |
+
Epoch 2/3 Training: 100%|███████████████████████████████████████████████████████████████████████████████████| 954/954 [04:25<00:00, 3.60it/s]
|
19 |
+
Epoch 2/3, Loss: 1115.7661, Train Accuracy: 0.9301
|
20 |
+
Epoch 3/3 Training: 100%|███████████████████████████████████████████████████████████████████████████████████| 954/954 [04:24<00:00, 3.61it/s]
|
21 |
+
Epoch 3/3, Loss: 324.9103, Train Accuracy: 0.9817
|
22 |
+
Testing: 100%|██████████████████████████████████████████████████████████████████████████████████████████████| 344/344 [00:27<00:00, 12.57it/s]
|
23 |
+
Test Accuracy: 0.8800
|
24 |
+
Precision: 0.8978, Recall: 0.8800, F1-score: 0.8741
|
25 |
+
PS C:\Users\NAVYA\Documents\moodify>
|
model.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.optim as optim
|
4 |
+
import numpy as np
|
5 |
+
from transformers import BertTokenizer, BertModel
|
6 |
+
from datasets import load_dataset
|
7 |
+
from sklearn.model_selection import train_test_split
|
8 |
+
from torch.utils.data import Dataset, DataLoader
|
9 |
+
from tqdm import tqdm
|
10 |
+
from sklearn.metrics import accuracy_score, f1_score
|
11 |
+
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
|
14 |
+
dataset = load_dataset("go_emotions")
|
15 |
+
|
16 |
+
# Extract text and labels
|
17 |
+
texts = dataset["train"]["text"][:20000] # Increased dataset size
|
18 |
+
labels = dataset["train"]["labels"][:20000] # Increased dataset size
|
19 |
+
|
20 |
+
# Convert labels to categorical
|
21 |
+
def fix_labels(labels):
|
22 |
+
labels = [max(label) if label else 0 for label in labels] # Convert multi-label to single-label
|
23 |
+
return torch.tensor(labels, dtype=torch.long)
|
24 |
+
|
25 |
+
labels = fix_labels(labels)
|
26 |
+
|
27 |
+
# Split dataset
|
28 |
+
train_texts, val_texts, train_labels, val_labels = train_test_split(texts, labels, test_size=0.2, random_state=42)
|
29 |
+
|
30 |
+
# Tokenizer
|
31 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
32 |
+
|
33 |
+
# Tokenize text
|
34 |
+
def tokenize(texts):
|
35 |
+
return tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
|
36 |
+
|
37 |
+
train_encodings = tokenize(train_texts)
|
38 |
+
val_encodings = tokenize(val_texts)
|
39 |
+
train_encodings = {key: val.to(device) for key, val in train_encodings.items()}
|
40 |
+
val_encodings = {key: val.to(device) for key, val in val_encodings.items()}
|
41 |
+
|
42 |
+
class EmotionDataset(Dataset):
|
43 |
+
def __init__(self, encodings, labels):
|
44 |
+
self.encodings = encodings
|
45 |
+
self.labels = labels
|
46 |
+
|
47 |
+
def __len__(self):
|
48 |
+
return len(self.labels)
|
49 |
+
|
50 |
+
def __getitem__(self, idx):
|
51 |
+
item = {key: val[idx] for key, val in self.encodings.items()}
|
52 |
+
item["labels"] = self.labels[idx]
|
53 |
+
return item
|
54 |
+
|
55 |
+
train_dataset = EmotionDataset(train_encodings, train_labels)
|
56 |
+
val_dataset = EmotionDataset(val_encodings, val_labels)
|
57 |
+
|
58 |
+
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
|
59 |
+
val_loader = DataLoader(val_dataset, batch_size=16)
|
60 |
+
|
61 |
+
class BertGRUClassifier(nn.Module):
|
62 |
+
def __init__(self, bert_model="bert-base-uncased", hidden_dim=128, num_classes=28):
|
63 |
+
super(BertGRUClassifier, self).__init__()
|
64 |
+
self.bert = BertModel.from_pretrained(bert_model)
|
65 |
+
self.gru = nn.GRU(self.bert.config.hidden_size, hidden_dim, batch_first=True)
|
66 |
+
self.dropout = nn.Dropout(0.3) # Added dropout layer
|
67 |
+
self.fc = nn.Linear(hidden_dim, num_classes)
|
68 |
+
|
69 |
+
def forward(self, input_ids, attention_mask):
|
70 |
+
with torch.no_grad():
|
71 |
+
bert_output = self.bert(input_ids=input_ids, attention_mask=attention_mask)
|
72 |
+
gru_output, _ = self.gru(bert_output.last_hidden_state)
|
73 |
+
output = self.fc(self.dropout(gru_output[:, -1, :])) # Apply dropout
|
74 |
+
return output
|
75 |
+
|
76 |
+
model = BertGRUClassifier()
|
77 |
+
model.to(device)
|
78 |
+
|
79 |
+
criterion = nn.CrossEntropyLoss()
|
80 |
+
optimizer = optim.Adam(model.parameters(), lr=2e-5)
|
81 |
+
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=2, gamma=0.1) # Added learning rate scheduler
|
82 |
+
|
83 |
+
def evaluate_model(model, data_loader):
|
84 |
+
model.eval()
|
85 |
+
predictions, true_labels = [], []
|
86 |
+
|
87 |
+
with torch.no_grad():
|
88 |
+
for batch in data_loader:
|
89 |
+
input_ids = batch["input_ids"].to(device)
|
90 |
+
attention_mask = batch["attention_mask"].to(device)
|
91 |
+
labels = batch["labels"].to(device)
|
92 |
+
|
93 |
+
outputs = model(input_ids, attention_mask)
|
94 |
+
preds = torch.argmax(outputs, dim=1).cpu().numpy()
|
95 |
+
predictions.extend(preds)
|
96 |
+
true_labels.extend(labels.cpu().numpy())
|
97 |
+
|
98 |
+
acc = accuracy_score(true_labels, predictions)
|
99 |
+
f1 = f1_score(true_labels, predictions, average='weighted')
|
100 |
+
return acc, f1
|
101 |
+
|
102 |
+
def train_model(model, train_loader, val_loader, epochs=10): # Increased number of epochs
|
103 |
+
for epoch in range(epochs):
|
104 |
+
model.train()
|
105 |
+
total_loss = 0
|
106 |
+
|
107 |
+
for batch in tqdm(train_loader, desc=f"Epoch {epoch + 1}/{epochs}"):
|
108 |
+
input_ids = batch["input_ids"].to(device)
|
109 |
+
attention_mask = batch["attention_mask"].to(device)
|
110 |
+
labels = batch["labels"].to(device)
|
111 |
+
|
112 |
+
optimizer.zero_grad()
|
113 |
+
outputs = model(input_ids, attention_mask)
|
114 |
+
loss = criterion(outputs, labels)
|
115 |
+
loss.backward()
|
116 |
+
optimizer.step()
|
117 |
+
|
118 |
+
total_loss += loss.item()
|
119 |
+
|
120 |
+
scheduler.step() # Step the scheduler
|
121 |
+
|
122 |
+
train_acc, train_f1 = evaluate_model(model, train_loader)
|
123 |
+
val_acc, val_f1 = evaluate_model(model, val_loader)
|
124 |
+
print(f"Epoch {epoch + 1}, Loss: {total_loss / len(train_loader)}, Train Acc: {train_acc:.4f}, Train F1: {train_f1:.4f}, Val Acc: {val_acc:.4f}, Val F1: {val_f1:.4f}")
|
125 |
+
|
126 |
+
# Save the model after each epoch
|
127 |
+
torch.save(model.state_dict(), f"model_epoch_{epoch + 1}.pth")
|
128 |
+
|
129 |
+
train_model(model, train_loader, val_loader)
|
130 |
+
|
131 |
+
# Assuming you have a test dataset
|
132 |
+
test_texts = dataset["test"]["text"]
|
133 |
+
test_labels = fix_labels(dataset["test"]["labels"])
|
134 |
+
test_encodings = tokenize(test_texts)
|
135 |
+
test_encodings = {key: val.to(device) for key, val in test_encodings.items()}
|
136 |
+
test_dataset = EmotionDataset(test_encodings, test_labels)
|
137 |
+
test_loader = DataLoader(test_dataset, batch_size=16)
|
138 |
+
|
139 |
+
test_acc, test_f1 = evaluate_model(model, test_loader)
|
140 |
+
print(f"Test Accuracy: {test_acc:.4f}, Test F1 Score: {test_f1:.4f}")
|
mood_classifier.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.optim as optim
|
4 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
5 |
+
from datasets import load_dataset
|
6 |
+
from torch.utils.data import DataLoader, Dataset, random_split
|
7 |
+
from tqdm import tqdm
|
8 |
+
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
|
9 |
+
|
10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
|
12 |
+
# Load GoEmotions dataset
|
13 |
+
dataset = load_dataset("go_emotions", split="train")
|
14 |
+
dataset = dataset.map(lambda x: {"label": x["labels"][0]}) # Convert multi-label to single-label
|
15 |
+
|
16 |
+
labels = list(set(dataset["label"])) # Unique labels
|
17 |
+
num_labels = len(labels)
|
18 |
+
|
19 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
20 |
+
|
21 |
+
class MoodDataset(Dataset):
|
22 |
+
def __init__(self, texts, labels):
|
23 |
+
self.texts = texts
|
24 |
+
self.labels = labels
|
25 |
+
|
26 |
+
def __len__(self):
|
27 |
+
return len(self.texts)
|
28 |
+
|
29 |
+
def __getitem__(self, idx):
|
30 |
+
inputs = tokenizer(self.texts[idx], return_tensors="pt", padding="max_length", truncation=True, max_length=128)
|
31 |
+
return {key: val.squeeze(0) for key, val in inputs.items()}, torch.tensor(labels.index(self.labels[idx]))
|
32 |
+
|
33 |
+
dataset = MoodDataset(dataset["text"], dataset["label"])
|
34 |
+
train_size = int(0.8 * len(dataset))
|
35 |
+
train_set, test_set = random_split(dataset, [train_size, len(dataset) - train_size])
|
36 |
+
|
37 |
+
train_loader = DataLoader(train_set, batch_size=32, shuffle=True)
|
38 |
+
test_loader = DataLoader(test_set, batch_size=32)
|
39 |
+
|
40 |
+
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=num_labels).to(device)
|
41 |
+
optimizer = optim.AdamW(model.parameters(), lr=2e-5)
|
42 |
+
criterion = nn.CrossEntropyLoss()
|
43 |
+
|
44 |
+
num_epochs = 3
|
45 |
+
for epoch in range(num_epochs):
|
46 |
+
model.train()
|
47 |
+
epoch_loss, correct, total = 0, 0, 0
|
48 |
+
preds, labels_list = [], []
|
49 |
+
|
50 |
+
for batch in tqdm(train_loader, desc=f"Epoch {epoch+1}/{num_epochs} Training"):
|
51 |
+
optimizer.zero_grad()
|
52 |
+
inputs = {key: val.to(device) for key, val in batch[0].items()}
|
53 |
+
labels = batch[1].to(device)
|
54 |
+
|
55 |
+
outputs = model(**inputs).logits
|
56 |
+
loss = criterion(outputs, labels)
|
57 |
+
|
58 |
+
loss.backward()
|
59 |
+
optimizer.step()
|
60 |
+
|
61 |
+
epoch_loss += loss.item()
|
62 |
+
correct += (outputs.argmax(dim=1) == labels).sum().item()
|
63 |
+
total += labels.size(0)
|
64 |
+
|
65 |
+
preds.extend(outputs.argmax(dim=1).cpu().numpy())
|
66 |
+
labels_list.extend(labels.cpu().numpy())
|
67 |
+
|
68 |
+
train_acc = accuracy_score(labels_list, preds)
|
69 |
+
precision, recall, f1, _ = precision_recall_fscore_support(labels_list, preds, average="weighted")
|
70 |
+
|
71 |
+
print(f"Epoch {epoch+1}: Loss: {epoch_loss:.4f}, Train Acc: {train_acc:.4f}, Precision: {precision:.4f}, Recall: {recall:.4f}, F1: {f1:.4f}")
|
72 |
+
|
73 |
+
# **Evaluate on Test Set**
|
74 |
+
model.eval()
|
75 |
+
test_preds, test_labels = [], []
|
76 |
+
|
77 |
+
with torch.no_grad():
|
78 |
+
for batch in tqdm(test_loader, desc="Evaluating on Test Set"):
|
79 |
+
inputs = {key: val.to(device) for key, val in batch[0].items()}
|
80 |
+
labels = batch[1].to(device)
|
81 |
+
|
82 |
+
outputs = model(**inputs).logits
|
83 |
+
test_preds.extend(outputs.argmax(dim=1).cpu().numpy())
|
84 |
+
test_labels.extend(labels.cpu().numpy())
|
85 |
+
|
86 |
+
test_acc = accuracy_score(test_labels, test_preds)
|
87 |
+
precision, recall, f1, _ = precision_recall_fscore_support(test_labels, test_preds, average="weighted")
|
88 |
+
|
89 |
+
print(f"Test Accuracy: {test_acc:.4f}, Precision: {precision:.4f}, Recall: {recall:.4f}, F1-score: {f1:.4f}")
|
90 |
+
|
91 |
+
# Save model
|
92 |
+
model.save_pretrained("mood_classifier")
|
precision_recall_curve.png
ADDED
![]() |
Git LFS Details
|
predict_emotions.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import BertTokenizer, DistilBertForSequenceClassification
|
3 |
+
|
4 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
5 |
+
|
6 |
+
# Load the trained model and tokenizer
|
7 |
+
try:
|
8 |
+
model = DistilBertForSequenceClassification.from_pretrained("./saved_model")
|
9 |
+
tokenizer = BertTokenizer.from_pretrained("./saved_model")
|
10 |
+
except Exception as e:
|
11 |
+
print(f"Error loading model or tokenizer: {e}")
|
12 |
+
exit()
|
13 |
+
|
14 |
+
model.to(device)
|
15 |
+
model.eval()
|
16 |
+
|
17 |
+
# Define the sentences
|
18 |
+
sentences = [
|
19 |
+
"I am so happy today!",
|
20 |
+
"This is the worst day ever.",
|
21 |
+
"I feel so loved and appreciated.",
|
22 |
+
"I am really angry right now.",
|
23 |
+
"I am so done cant take this anymore",
|
24 |
+
"i have to finish this report by tomorrow but so tired",
|
25 |
+
"let's do it",
|
26 |
+
"i have got this,, yayyyy",
|
27 |
+
"energetic",
|
28 |
+
"worst tired lazy",
|
29 |
+
"I am feeling very sad and lonely."
|
30 |
+
]
|
31 |
+
|
32 |
+
# Define the label names
|
33 |
+
label_names = ["admiration", "amusement", "anger", "annoyance", "approval", "caring", "confusion", "curiosity", "desire", "disappointment", "disapproval", "disgust", "embarrassment", "excitement", "fear", "gratitude", "grief", "joy", "love", "nervousness", "optimism", "pride", "realization", "relief", "remorse", "sadness", "surprise", "neutral"]
|
34 |
+
|
35 |
+
def predict_emotion(sentence):
|
36 |
+
inputs = tokenizer(sentence, return_tensors="pt", padding="max_length", truncation=True, max_length=128)
|
37 |
+
inputs = {key: val.to(device) for key, val in inputs.items() if key != "token_type_ids"}
|
38 |
+
|
39 |
+
with torch.no_grad():
|
40 |
+
outputs = model(**inputs)
|
41 |
+
predicted_class = torch.argmax(outputs.logits, dim=1).cpu().numpy()[0]
|
42 |
+
|
43 |
+
return predicted_class, label_names[predicted_class]
|
44 |
+
|
45 |
+
# Predict emotions for the sentences
|
46 |
+
for sentence in sentences:
|
47 |
+
predicted_emotion, predicted_label_name = predict_emotion(sentence)
|
48 |
+
print(f"Predicted emotion for '{sentence}': {predicted_emotion} ({predicted_label_name})")
|
predict_intent.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
3 |
+
from datasets import load_dataset
|
4 |
+
from collections import Counter
|
5 |
+
|
6 |
+
# Check for CUDA
|
7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
+
|
9 |
+
# Load dataset and get correct label names
|
10 |
+
dataset = load_dataset("clinc_oos", "plus")
|
11 |
+
label_names = dataset["train"].features["intent"].names # Ensure correct order
|
12 |
+
|
13 |
+
# Debugging check
|
14 |
+
print(f"Total labels: {len(label_names)}") # Should print 151
|
15 |
+
print("Sample labels:", label_names[:10]) # Print first 10 labels
|
16 |
+
|
17 |
+
# Load the trained model
|
18 |
+
num_labels = len(label_names) # Should be 151
|
19 |
+
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=num_labels)
|
20 |
+
model.load_state_dict(torch.load("intent_classifier.pth", map_location=device))
|
21 |
+
model.to(device)
|
22 |
+
model.eval()
|
23 |
+
|
24 |
+
# Load tokenizer
|
25 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
26 |
+
|
27 |
+
def predict_intent(sentence):
|
28 |
+
inputs = tokenizer(sentence, return_tensors="pt", padding="max_length", truncation=True, max_length=128)
|
29 |
+
inputs = {key: val.to(device) for key, val in inputs.items()}
|
30 |
+
|
31 |
+
with torch.no_grad():
|
32 |
+
outputs = model(**inputs)
|
33 |
+
predicted_class = torch.argmax(outputs.logits, dim=1).cpu().numpy()[0]
|
34 |
+
|
35 |
+
if predicted_class >= len(label_names): # Prevent out-of-range errors
|
36 |
+
print(f"Warning: Predicted class {predicted_class} is out of range!")
|
37 |
+
return predicted_class, "Unknown Label"
|
38 |
+
|
39 |
+
return predicted_class, label_names[predicted_class]
|
40 |
+
|
41 |
+
# Example usage
|
42 |
+
sentence = "I need to attend a meeting but so tired but important"
|
43 |
+
predicted_intent, predicted_label_name = predict_intent(sentence)
|
44 |
+
print(f"Predicted intent for '{sentence}': {predicted_intent} ({predicted_label_name})")
|
45 |
+
|
46 |
+
# # Fix: Count labels correctly from dataset["train"]
|
47 |
+
# label_counts = Counter([label_names[label] for label in dataset["train"]["intent"]])
|
48 |
+
# print("Label distribution:", label_counts) # Print top 10 most common labels
|
requirements.txt
CHANGED
@@ -1,3 +1,13 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
together
|
2 |
+
python-dotenv
|
3 |
+
torch
|
4 |
+
transformers==4.35.2
|
5 |
+
tokenizers==0.15.0
|
6 |
+
gdown
|
7 |
+
streamlit
|
8 |
+
pandas
|
9 |
+
|
10 |
+
transformers==4.35.2
|
11 |
+
tokenizers==0.15.0
|
12 |
+
|
13 |
+
|
task.py
ADDED
@@ -0,0 +1,558 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from together import Together
|
6 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, BertTokenizer,DistilBertTokenizer, BertForSequenceClassification, DistilBertForSequenceClassification
|
7 |
+
from datetime import datetime, timedelta
|
8 |
+
import pandas as pd
|
9 |
+
from task_css import get_custom_css # Import the custom CSS function
|
10 |
+
import gdown
|
11 |
+
|
12 |
+
# Set environment variable for offline mode
|
13 |
+
os.environ["TRANSFORMERS_OFFLINE"] = "1"
|
14 |
+
|
15 |
+
# Load environment variables
|
16 |
+
load_dotenv()
|
17 |
+
|
18 |
+
# Together AI Client with API key from environment variable
|
19 |
+
client = Together(api_key=os.getenv("TOGETHER_API_KEY", ""))
|
20 |
+
|
21 |
+
# Set device
|
22 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
23 |
+
|
24 |
+
# Load Intent Model
|
25 |
+
intent_model_path = "intent_classifier.pth"
|
26 |
+
# Extract file ID from Google Drive URL
|
27 |
+
file_id = "1_GDGvV3MVvBguIsjMyDLg3RxUV_gnFAY"
|
28 |
+
num_intent_labels = 151 # Moved this up before model creation
|
29 |
+
|
30 |
+
# Load Emotion Model
|
31 |
+
emotions_model_path = "./saved_model"
|
32 |
+
emotions_folder_id = "1gYWkbC_XBw_GZjsfwXvubHFil4BCq_gH"
|
33 |
+
|
34 |
+
# Add new pretrained model ID
|
35 |
+
pretrained_folder_id = "13t_EB2LFhRIwb3dkKDtA0O5NXXZBoG-j"
|
36 |
+
|
37 |
+
# Initialize Session State
|
38 |
+
if "is_ready" not in st.session_state:
|
39 |
+
st.session_state.is_ready = False
|
40 |
+
st.session_state.models = {} # Initialize models dict immediately
|
41 |
+
st.session_state.tasks = []
|
42 |
+
st.session_state.task_counter = 0
|
43 |
+
st.session_state.overall_emotion = None
|
44 |
+
st.session_state.overall_emotion_label = "Neutral"
|
45 |
+
|
46 |
+
# Page Configuration first
|
47 |
+
st.set_page_config(
|
48 |
+
page_title="🚀 AI Productivity Assistant",
|
49 |
+
layout="wide",
|
50 |
+
page_icon="🎯"
|
51 |
+
)
|
52 |
+
|
53 |
+
# Custom CSS for enhanced styling
|
54 |
+
st.markdown(get_custom_css(), unsafe_allow_html=True)
|
55 |
+
|
56 |
+
# Show loading screen if models aren't ready
|
57 |
+
if not st.session_state.is_ready:
|
58 |
+
st.markdown(
|
59 |
+
"""
|
60 |
+
<div class="loading-container" style="text-align: center; padding: 50px;">
|
61 |
+
<div class="loading-spinner"></div>
|
62 |
+
<h2>Setting up your AI assistant...</h2>
|
63 |
+
<p>This may take a minute. We're downloading the required models.</p>
|
64 |
+
</div>
|
65 |
+
""",
|
66 |
+
unsafe_allow_html=True
|
67 |
+
)
|
68 |
+
|
69 |
+
# Load models here
|
70 |
+
try:
|
71 |
+
# First download pretrained models
|
72 |
+
if not os.path.exists("pretrained_models"):
|
73 |
+
with st.status("Downloading base models...", expanded=True) as status:
|
74 |
+
os.makedirs("pretrained_models", exist_ok=True)
|
75 |
+
gdown.download_folder(
|
76 |
+
f"https://drive.google.com/drive/folders/{pretrained_folder_id}",
|
77 |
+
output="pretrained_models",
|
78 |
+
quiet=False
|
79 |
+
)
|
80 |
+
status.update(label="Base models downloaded!", state="complete")
|
81 |
+
|
82 |
+
# Intent Model Loading
|
83 |
+
if not os.path.exists(intent_model_path):
|
84 |
+
with st.status("Downloading intent model...", expanded=True) as status:
|
85 |
+
output = gdown.download(
|
86 |
+
f"https://drive.google.com/uc?id={file_id}",
|
87 |
+
intent_model_path,
|
88 |
+
quiet=False
|
89 |
+
)
|
90 |
+
status.update(label="Intent model downloaded!", state="complete")
|
91 |
+
|
92 |
+
# Emotion Model Loading
|
93 |
+
if not os.path.exists(emotions_model_path):
|
94 |
+
with st.status("Downloading emotion model...", expanded=True) as status:
|
95 |
+
os.makedirs(emotions_model_path, exist_ok=True)
|
96 |
+
gdown.download_folder(
|
97 |
+
f"https://drive.google.com/drive/folders/{emotions_folder_id}",
|
98 |
+
output=emotions_model_path,
|
99 |
+
quiet=False
|
100 |
+
)
|
101 |
+
status.update(label="Emotion model downloaded!", state="complete")
|
102 |
+
|
103 |
+
# Load and store intent model
|
104 |
+
intent_model = AutoModelForSequenceClassification.from_pretrained(
|
105 |
+
"pretrained_models/bert-base-uncased",
|
106 |
+
num_labels=num_intent_labels,
|
107 |
+
ignore_mismatched_sizes=True, # Add this parameter
|
108 |
+
local_files_only=True
|
109 |
+
)
|
110 |
+
intent_model.load_state_dict(
|
111 |
+
torch.load(intent_model_path, map_location=device, weights_only=True)
|
112 |
+
)
|
113 |
+
st.session_state.models["intent_model"] = intent_model.to(device).eval()
|
114 |
+
st.session_state.models["intent_tokenizer"] = AutoTokenizer.from_pretrained(
|
115 |
+
"pretrained_models/bert-base-uncased",
|
116 |
+
local_files_only=True
|
117 |
+
)
|
118 |
+
|
119 |
+
# Load and store emotion model
|
120 |
+
emotions_model = AutoModelForSequenceClassification.from_pretrained(
|
121 |
+
emotions_model_path,
|
122 |
+
ignore_mismatched_sizes=True, # Add this parameter
|
123 |
+
local_files_only=True
|
124 |
+
)
|
125 |
+
st.session_state.models["emotions_model"] = emotions_model.to(device).eval()
|
126 |
+
st.session_state.models["emotions_tokenizer"] = AutoTokenizer.from_pretrained(
|
127 |
+
emotions_model_path,
|
128 |
+
local_files_only=True
|
129 |
+
)
|
130 |
+
|
131 |
+
# Set ready state
|
132 |
+
st.session_state.is_ready = True
|
133 |
+
st.rerun()
|
134 |
+
|
135 |
+
except Exception as e:
|
136 |
+
st.error(f"Error loading models: {str(e)}")
|
137 |
+
st.stop()
|
138 |
+
|
139 |
+
# Only show main app if models are ready
|
140 |
+
if st.session_state.is_ready:
|
141 |
+
# Title with custom styling
|
142 |
+
st.markdown('<div class="main-header">🎯 MoodifyTask: AI Task Prioritization & Wellness Assistant</div>', unsafe_allow_html=True)
|
143 |
+
|
144 |
+
# Emotion Labels
|
145 |
+
emotion_label_names = [
|
146 |
+
"admiration", "amusement", "anger", "annoyance", "approval",
|
147 |
+
"caring", "confusion", "curiosity", "desire", "disappointment",
|
148 |
+
"disapproval", "disgust", "embarrassment", "excitement", "fear",
|
149 |
+
"gratitude", "grief", "joy", "love", "nervousness",
|
150 |
+
"optimism", "pride", "realization", "relief", "remorse",
|
151 |
+
"sadness", "surprise", "neutral"
|
152 |
+
]
|
153 |
+
|
154 |
+
# Emotion Categories
|
155 |
+
positive_emotions = ["admiration", "amusement", "approval", "caring", "curiosity", "excitement", "gratitude", "joy", "love", "optimism", "pride", "relief", "surprise"]
|
156 |
+
negative_emotions = ["anger", "annoyance", "disappointment", "disapproval", "disgust", "embarrassment", "fear", "grief", "nervousness", "remorse", "sadness"]
|
157 |
+
neutral_emotions = ["realization", "neutral"]
|
158 |
+
|
159 |
+
# Predict Intent
|
160 |
+
def predict_intent(sentence):
|
161 |
+
inputs = st.session_state.models["intent_tokenizer"](
|
162 |
+
sentence, return_tensors="pt", padding="max_length", truncation=True, max_length=128
|
163 |
+
)
|
164 |
+
inputs = {key: val.to(device) for key, val in inputs.items()}
|
165 |
+
with torch.no_grad():
|
166 |
+
outputs = st.session_state.models["intent_model"](**inputs)
|
167 |
+
predicted_class = torch.argmax(outputs.logits, dim=1).cpu().numpy()[0]
|
168 |
+
|
169 |
+
# Mapping Intent IDs to Priorities (0-150)
|
170 |
+
PRIORITY_MAPPING = {
|
171 |
+
5: [8, 35, 42, 74, 97, 110, 118, 120, 124, 136], # freeze_account, report_lost_card, flight_status, report_fraud, credit_limit, lost_luggage, dispute_charge, overdraft, cancel_reservation, emergency
|
172 |
+
4: [14, 15, 19, 20, 39, 47, 48, 49, 50, 69, 70, 71, 72], # bill_balance, bill_due, exchange_rate, credit_score, interest_rate, insurance, medical_expenses, appointment_schedule, meeting_schedule, dentist_appointment, doctor_appointment, prescription_refill, pharmacy_hours
|
173 |
+
3: [33, 34, 41, 51, 56, 57, 62, 66, 77, 78, 85], # hotel_reservation, car_rental, restaurant_reservation, tracking_package, check_in, check_out, traffic_update, directions, smart_home_on, smart_home_off, weather_forecast
|
174 |
+
2: [0, 1, 3, 6, 9, 13, 16, 17, 21, 25, 27, 28, 36, 40, 45, 52, 61], # restaurant_reviews, shopping_list, what_song, schedule_meeting, translate, play_music, book_hotel, book_flight, gas_prices, exchange_rate, movie_showtimes, recipe, cancel_flight, book_reservation, order_food, car_services, joke
|
175 |
+
1: [2, 4, 5, 7, 10, 11, 12, 18, 22, 23, 24, 26, 30, 31, 32, 37, 38, 43, 44, 46, 53, 54, 55, 58, 59, 60, 63, 64, 65, 67, 68, 73]
|
176 |
+
# tell_joke, fun_fact, trivia, horoscope, dog_fact, cat_fact, define_word, stock_price, sports_update, lottery_results, currency_conversion, holiday_list, language_learning, random_fact, poem, quote, daily_horoscope, joke_request, music_recommendation, podcast_recommendation, celebrity_gossip, movie_recommendation, TV_show_recommendation, book_recommendation, game_recommendation, radio_recommendation, trivia_game, riddle, name_meaning, birthday_reminder, anniversary_reminder, affirmations
|
177 |
+
}
|
178 |
+
|
179 |
+
# Find the priority based on predicted_class
|
180 |
+
predicted_intent_score = next((priority for priority, ids in PRIORITY_MAPPING.items() if predicted_class in ids), 1) # Default to 1 if not found
|
181 |
+
|
182 |
+
return predicted_intent_score
|
183 |
+
|
184 |
+
# Emotion to Numeric Score Mapping
|
185 |
+
EMOTION_MAPPING = {
|
186 |
+
"admiration": 4, "amusement": 3, "anger": 5, "annoyance": 4, "approval": 3,
|
187 |
+
"caring": 4, "confusion": 3, "curiosity": 3, "desire": 4, "disappointment": 4,
|
188 |
+
"disapproval": 4, "disgust": 5, "embarrassment": 4, "excitement": 5, "fear": 5,
|
189 |
+
"gratitude": 3, "grief": 5, "joy": 5, "love": 5, "nervousness": 4,
|
190 |
+
"optimism": 4, "pride": 4, "realization": 3, "relief": 3, "remorse": 4,
|
191 |
+
"sadness": 5, "surprise": 3, "neutral": 3
|
192 |
+
}
|
193 |
+
|
194 |
+
# Function to get numeric emotion score
|
195 |
+
def get_emotion_score(emotion):
|
196 |
+
return EMOTION_MAPPING.get(emotion.lower(), 3) # Default to 3 if not found
|
197 |
+
# Predict Emotion
|
198 |
+
def predict_emotion(sentence):
|
199 |
+
if not sentence.strip():
|
200 |
+
return 3, "neutral"
|
201 |
+
# Ensure the input is a full sentence
|
202 |
+
if len(sentence.split()) == 1:
|
203 |
+
sentence = f"I feel {sentence}"
|
204 |
+
inputs = st.session_state.models["emotions_tokenizer"](
|
205 |
+
sentence, return_tensors="pt", padding="max_length", truncation=True, max_length=128
|
206 |
+
)
|
207 |
+
inputs = {key: val.to(device) for key, val in inputs.items() if key != "token_type_ids"}
|
208 |
+
|
209 |
+
with torch.no_grad():
|
210 |
+
outputs = st.session_state.models["emotions_model"](**inputs)
|
211 |
+
predicted_class = torch.argmax(outputs.logits, dim=1).cpu().numpy()[0]
|
212 |
+
|
213 |
+
detected_emotion = emotion_label_names[predicted_class]
|
214 |
+
|
215 |
+
# Manually adjust for stress/pressure-related words
|
216 |
+
stress_keywords = ["stress", "stressed", "overwhelmed", "pressure", "tense", "burnout"]
|
217 |
+
if any(word in sentence.lower() for word in stress_keywords):
|
218 |
+
if detected_emotion not in ["sadness", "nervousness"]:
|
219 |
+
detected_emotion = "nervousness" # Change to "sadness" if you prefer
|
220 |
+
|
221 |
+
emotion_score = get_emotion_score(detected_emotion)
|
222 |
+
if emotion_score is None:
|
223 |
+
emotion_score = 3 # Default neutral score
|
224 |
+
|
225 |
+
return emotion_score, detected_emotion
|
226 |
+
|
227 |
+
|
228 |
+
# Get Emotion Category
|
229 |
+
def get_emotion_category(emotion):
|
230 |
+
if emotion in positive_emotions:
|
231 |
+
return "positive"
|
232 |
+
elif emotion in negative_emotions:
|
233 |
+
return "negative"
|
234 |
+
else:
|
235 |
+
return "neutral"
|
236 |
+
|
237 |
+
|
238 |
+
def normalize_priority(priority, min_value=0, max_value=10):
|
239 |
+
return (priority - min_value) / (max_value - min_value) # Normalize between 0-1
|
240 |
+
|
241 |
+
# Calculate Task Priority
|
242 |
+
def calculate_priority_score(predicted_intent_score,emotion_score, emotion, time_remaining, complexity, emotion_category):
|
243 |
+
"""
|
244 |
+
Calculate an adaptive priority score for tasks based on intent, emotion, time urgency, and complexity.
|
245 |
+
"""
|
246 |
+
emotion_score = emotion_score if emotion_score is not None else 3
|
247 |
+
# Normalize time urgency (scale 0 to 1 based on 7 days)
|
248 |
+
time_score = max(0, min(1, 1 - (time_remaining.total_seconds() / (7 * 24 * 3600))))
|
249 |
+
|
250 |
+
# Set emotion-based adjustments
|
251 |
+
stress_emotions = ["nervousness", "sadness", "fear"]
|
252 |
+
frustration_emotions = ["anger", "frustration","disappointment","annoyance"]
|
253 |
+
anxiety_emotions = ["anxiety", "uncertainty"]
|
254 |
+
|
255 |
+
|
256 |
+
if emotion_category == "negative":
|
257 |
+
if emotion in stress_emotions:
|
258 |
+
# Prioritize **easy, quick** tasks to reduce cognitive load
|
259 |
+
priority = (predicted_intent_score * 0.15) + (emotion_score * 0.1) + (time_score * 0.3) + ((10 - complexity) * 0.45)
|
260 |
+
|
261 |
+
elif emotion in frustration_emotions:
|
262 |
+
# Prioritize **engaging** tasks (not too easy) but keep urgency in mind
|
263 |
+
priority = (predicted_intent_score * 0.2) + (emotion_score * 0.15) + (time_score * 0.25) + (complexity * 0.4)
|
264 |
+
|
265 |
+
elif emotion in anxiety_emotions:
|
266 |
+
# Prioritize **urgent, low-complexity** tasks
|
267 |
+
priority = (predicted_intent_score * 0.2) + (emotion_score * 0.1) + (time_score * 0.4) + ((10 - complexity) * 0.3)
|
268 |
+
|
269 |
+
else:
|
270 |
+
# Default for negative emotions: balance urgency and ease
|
271 |
+
priority = (predicted_intent_score * 0.2) + (emotion_score * 0.1) + (time_score * 0.3) + ((10 - complexity) * 0.4)
|
272 |
+
|
273 |
+
elif emotion_category == "positive":
|
274 |
+
# If the user is in a **good mood**, favor challenging, high-impact tasks
|
275 |
+
priority = (predicted_intent_score * 0.35) + (emotion_score * 0.2) + (time_score * 0.25) + (complexity * 0.2)
|
276 |
+
|
277 |
+
else: # Neutral emotion
|
278 |
+
# Keep a balance between difficulty and urgency
|
279 |
+
priority = (predicted_intent_score * 0.3) + (emotion_score * 0.2) + (time_score * 0.2) + (complexity * 0.3)
|
280 |
+
|
281 |
+
return normalize_priority(priority) # Ensure no negative priority values
|
282 |
+
|
283 |
+
|
284 |
+
|
285 |
+
|
286 |
+
# AI-Generated Plan Based on Start Time
|
287 |
+
from datetime import datetime
|
288 |
+
|
289 |
+
def get_llama_suggestion(emotion, tasks, selected_datetime):
|
290 |
+
"""Generate AI plan based on full datetime instead of just time"""
|
291 |
+
# Sort tasks by priority (higher priority first)
|
292 |
+
sorted_tasks = sorted(tasks, key=lambda x: x["priority_score"], reverse=True)
|
293 |
+
|
294 |
+
# Filter tasks based on selected datetime
|
295 |
+
filtered_tasks = [
|
296 |
+
task for task in sorted_tasks
|
297 |
+
if task["due_date_time"] >= selected_datetime
|
298 |
+
]
|
299 |
+
|
300 |
+
if not filtered_tasks:
|
301 |
+
well_being_prompts = {
|
302 |
+
"nervousness": "Suggest mindfulness exercises and short relaxation techniques.",
|
303 |
+
"sadness": "Suggest comforting activities like journaling or light exercise.",
|
304 |
+
"anger": "Suggest ways to channel frustration productively.",
|
305 |
+
"joy": "Suggest ways to maintain productivity while feeling good.",
|
306 |
+
"neutral": "Suggest general relaxation activities like listening to music."
|
307 |
+
}
|
308 |
+
well_being_prompt = f"""
|
309 |
+
The user is feeling {emotion}.
|
310 |
+
They have no tasks scheduled after {selected_datetime.strftime('%B %d, %I:%M %p')}.
|
311 |
+
{well_being_prompts.get(emotion, 'Provide general well-being tips.')}
|
312 |
+
"""
|
313 |
+
try:
|
314 |
+
response = client.chat.completions.create(
|
315 |
+
messages=[{"role": "user", "content": well_being_prompt}],
|
316 |
+
model="meta-llama/Llama-3.3-70B-Instruct-Turbo",
|
317 |
+
temperature=0.7,
|
318 |
+
)
|
319 |
+
return response.choices[0].message.content
|
320 |
+
except Exception as e:
|
321 |
+
return f"Error generating well-being tips: {e}"
|
322 |
+
|
323 |
+
# Prepare the prompt with more detailed datetime information
|
324 |
+
task_details = "\n".join([
|
325 |
+
f"- {task['description']} (Priority: {task['priority_score']:.2f}, Complexity: {task['complexity']}, Due: {task['due_date_time'].strftime('%B %d, %I:%M %p')})"
|
326 |
+
for task in filtered_tasks
|
327 |
+
])
|
328 |
+
|
329 |
+
prompt = f"""
|
330 |
+
The user is feeling {emotion}.
|
331 |
+
They need a structured productivity plan starting from {selected_datetime.strftime('%B %d, %I:%M %p')}, not the current time.
|
332 |
+
|
333 |
+
Their prioritized tasks (due on or after the selected time), sorted by priority score:
|
334 |
+
{task_details}
|
335 |
+
|
336 |
+
Please provide:
|
337 |
+
1. A detailed schedule with specific times for each task
|
338 |
+
2. Strategic breaks based on task complexity and emotional state
|
339 |
+
3. Wellness activities that complement their current emotion
|
340 |
+
4. Tips for managing tasks effectively given their emotional state
|
341 |
+
5. Suggestions for handling high-priority tasks first while maintaining well-being
|
342 |
+
"""
|
343 |
+
|
344 |
+
try:
|
345 |
+
response = client.chat.completions.create(
|
346 |
+
messages=[{"role": "user", "content": prompt}],
|
347 |
+
model="meta-llama/Llama-3.3-70B-Instruct-Turbo",
|
348 |
+
temperature=0.7,
|
349 |
+
)
|
350 |
+
return response.choices[0].message.content
|
351 |
+
except Exception as e:
|
352 |
+
return f"Error generating AI plan: {e}"
|
353 |
+
|
354 |
+
|
355 |
+
# Layout with improved spacing
|
356 |
+
col1, col2 = st.columns([1, 1], gap="medium")
|
357 |
+
|
358 |
+
with col1:
|
359 |
+
# st.markdown('<div class="emotion-analysis">', unsafe_allow_html=True)
|
360 |
+
st.markdown('<h3>🌟 Mood Analysis</h3>', unsafe_allow_html=True)
|
361 |
+
emotion_sentence = st.text_area(
|
362 |
+
"Describe how you're feeling today:",
|
363 |
+
value="",
|
364 |
+
height=150,
|
365 |
+
help="Your emotional state helps us prioritize tasks more effectively"
|
366 |
+
)
|
367 |
+
|
368 |
+
if emotion_sentence:
|
369 |
+
emotion_score, emotion_label = predict_emotion(emotion_sentence)
|
370 |
+
st.session_state.overall_emotion = emotion_score
|
371 |
+
st.session_state.overall_emotion_label = emotion_label
|
372 |
+
|
373 |
+
st.markdown(f'<div class="emotion-badge">Detected Emotion: {emotion_label}</div>', unsafe_allow_html=True)
|
374 |
+
|
375 |
+
# Emotion-based task reprioritization
|
376 |
+
for task in st.session_state.tasks:
|
377 |
+
task["priority_score"] = calculate_priority_score(
|
378 |
+
task["predicted_intent_score"],
|
379 |
+
emotion_score,
|
380 |
+
emotion_label,
|
381 |
+
task["time_remaining"],
|
382 |
+
task["complexity"],
|
383 |
+
get_emotion_category(emotion_label)
|
384 |
+
)
|
385 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
386 |
+
|
387 |
+
with col2:
|
388 |
+
# st.markdown('<div class="task-input">', unsafe_allow_html=True)
|
389 |
+
st.markdown('<h3>📅 Add New Task</h3>', unsafe_allow_html=True)
|
390 |
+
with st.form("task_form", clear_on_submit=True):
|
391 |
+
task_description = st.text_input("Task Description", help="Be specific about what needs to be done")
|
392 |
+
col_date, col_time = st.columns(2)
|
393 |
+
|
394 |
+
with col_date:
|
395 |
+
due_date = st.date_input("Due Date")
|
396 |
+
|
397 |
+
with col_time:
|
398 |
+
due_time = st.time_input("Due Time")
|
399 |
+
|
400 |
+
complexity = st.slider(
|
401 |
+
"Task Complexity (1-10)",
|
402 |
+
1, 10, 5,
|
403 |
+
help="Higher complexity may affect task priority"
|
404 |
+
)
|
405 |
+
|
406 |
+
submitted = st.form_submit_button("➕ Add Task")
|
407 |
+
|
408 |
+
if submitted and task_description and due_date and due_time:
|
409 |
+
due_date_time = datetime.combine(due_date, due_time)
|
410 |
+
time_remaining = due_date_time - datetime.now()
|
411 |
+
predicted_intent_score = predict_intent(task_description)
|
412 |
+
|
413 |
+
task = {
|
414 |
+
"id": st.session_state.task_counter, # Add unique ID
|
415 |
+
"description": task_description,
|
416 |
+
"due_date_time": due_date_time,
|
417 |
+
"time_remaining": time_remaining,
|
418 |
+
"complexity": complexity,
|
419 |
+
"predicted_intent_score": predicted_intent_score,
|
420 |
+
"predicted_emotion": st.session_state.overall_emotion,
|
421 |
+
"predicted_label_name": st.session_state.overall_emotion_label,
|
422 |
+
"priority_score": calculate_priority_score(
|
423 |
+
predicted_intent_score,
|
424 |
+
st.session_state.overall_emotion,
|
425 |
+
st.session_state.overall_emotion_label,
|
426 |
+
time_remaining,
|
427 |
+
complexity,
|
428 |
+
get_emotion_category(st.session_state.overall_emotion_label)
|
429 |
+
),
|
430 |
+
"completed": False
|
431 |
+
}
|
432 |
+
|
433 |
+
st.session_state.tasks.append(task)
|
434 |
+
st.session_state.task_counter += 1 # Increment counter
|
435 |
+
st.success("✅ Task Added Successfully!")
|
436 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
437 |
+
|
438 |
+
# Task List with Improved Visualization
|
439 |
+
if st.session_state.tasks:
|
440 |
+
st.markdown('<h3>📌 Task Priority List</h3>', unsafe_allow_html=True)
|
441 |
+
|
442 |
+
# Sort tasks by priority
|
443 |
+
sorted_tasks = sorted(st.session_state.tasks, key=lambda x: x["priority_score"], reverse=True)
|
444 |
+
|
445 |
+
# Create task overview cards
|
446 |
+
st.markdown('<div class="task-overview">', unsafe_allow_html=True)
|
447 |
+
col1, col2 = st.columns(2)
|
448 |
+
with col1:
|
449 |
+
st.markdown(f'<div class="metric-card"><div class="metric-value">{len(sorted_tasks)}</div><div class="metric-label">Total Tasks</div></div>', unsafe_allow_html=True)
|
450 |
+
# with col2:
|
451 |
+
# high_priority = len([t for t in sorted_tasks if t["priority_score"] > 0.7])
|
452 |
+
# st.markdown(f'<div class="metric-card"><div class="metric-value">{high_priority}</div><div class="metric-label">High Priority</div></div>', unsafe_allow_html=True)
|
453 |
+
with col2:
|
454 |
+
today = datetime.now()
|
455 |
+
due_today = len([t for t in sorted_tasks if t["due_date_time"].date() == today.date()])
|
456 |
+
st.markdown(f'<div class="metric-card"><div class="metric-value">{due_today}</div><div class="metric-label">Due Today</div></div>', unsafe_allow_html=True)
|
457 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
458 |
+
|
459 |
+
# Display tasks with priority-based styling
|
460 |
+
for idx, task in enumerate(sorted_tasks):
|
461 |
+
priority_class = "high-priority" if task["priority_score"] > 0.7 else "medium-priority"
|
462 |
+
|
463 |
+
# Create a single row for task and buttons
|
464 |
+
task_container = st.container()
|
465 |
+
with task_container:
|
466 |
+
cols = st.columns([0.8, 0.1, 0.1])
|
467 |
+
|
468 |
+
# Task content in first column
|
469 |
+
with cols[0]:
|
470 |
+
st.markdown(f"""
|
471 |
+
<div class="priority-task {priority_class}">
|
472 |
+
<div class="task-content">
|
473 |
+
<div class="task-header">
|
474 |
+
<span class="task-title">{task["description"]}</span>
|
475 |
+
<span class="priority-score">Priority: {task["priority_score"]:.2f}</span>
|
476 |
+
</div>
|
477 |
+
<div class="task-details">
|
478 |
+
<span class="task-stat">Due: {task["due_date_time"].strftime("%d %b, %I:%M %p")}</span>
|
479 |
+
<span class="task-stat">Complexity: {task["complexity"]}</span>
|
480 |
+
</div>
|
481 |
+
</div>
|
482 |
+
</div>
|
483 |
+
""", unsafe_allow_html=True)
|
484 |
+
st.session_state.editing_task_id = None
|
485 |
+
# Edit button
|
486 |
+
with cols[1]:
|
487 |
+
if st.button("✏️", key=f"edit_{idx}", help="Edit task"):
|
488 |
+
st.session_state.editing_task_id = idx
|
489 |
+
|
490 |
+
# Delete button
|
491 |
+
with cols[2]:
|
492 |
+
if st.button("🗑️", key=f"delete_{idx}", help="Delete task"):
|
493 |
+
st.session_state.tasks.pop(idx)
|
494 |
+
st.success("Task deleted!")
|
495 |
+
st.rerun()
|
496 |
+
|
497 |
+
# Show edit form below the task if being edited
|
498 |
+
if st.session_state.editing_task_id == idx:
|
499 |
+
with st.form(key=f"edit_form_{idx}"):
|
500 |
+
col1, col2 = st.columns(2)
|
501 |
+
with col1:
|
502 |
+
new_description = st.text_input("Description", value=task["description"])
|
503 |
+
new_complexity = st.slider("Complexity", 1, 10, value=task["complexity"])
|
504 |
+
with col2:
|
505 |
+
new_due_date = st.date_input("Due Date", value=task["due_date_time"].date())
|
506 |
+
new_due_time = st.time_input("Due Time", value=task["due_date_time"].time())
|
507 |
+
|
508 |
+
col1, col2 = st.columns(2)
|
509 |
+
with col1:
|
510 |
+
if st.form_submit_button("💾 Save"):
|
511 |
+
# Update task
|
512 |
+
task["description"] = new_description
|
513 |
+
task["due_date_time"] = datetime.combine(new_due_date, new_due_time)
|
514 |
+
task["time_remaining"] = task["due_date_time"] - datetime.now()
|
515 |
+
task["complexity"] = new_complexity
|
516 |
+
|
517 |
+
# Recalculate priority
|
518 |
+
task["priority_score"] = calculate_priority_score(
|
519 |
+
task["predicted_intent_score"],
|
520 |
+
task["predicted_emotion"],
|
521 |
+
task["predicted_label_name"],
|
522 |
+
task["time_remaining"],
|
523 |
+
task["complexity"],
|
524 |
+
get_emotion_category(task["predicted_label_name"])
|
525 |
+
)
|
526 |
+
st.session_state.editing_task_id = None
|
527 |
+
st.success("Task updated!")
|
528 |
+
st.rerun()
|
529 |
+
|
530 |
+
with col2:
|
531 |
+
if st.form_submit_button("❌ Cancel"):
|
532 |
+
st.session_state.editing_task_id = None
|
533 |
+
st.rerun()
|
534 |
+
|
535 |
+
# AI Plan Section
|
536 |
+
if st.session_state.tasks:
|
537 |
+
st.markdown('<div class="custom-card">', unsafe_allow_html=True)
|
538 |
+
st.markdown('<h3>⏰ AI Task Planning</h3>', unsafe_allow_html=True)
|
539 |
+
|
540 |
+
col_date, col_time = st.columns(2)
|
541 |
+
|
542 |
+
with col_date:
|
543 |
+
plan_date = st.date_input("Select Plan Date", datetime.now().date())
|
544 |
+
|
545 |
+
with col_time:
|
546 |
+
plan_time = st.time_input("Select Plan Start Time", datetime.now().time())
|
547 |
+
|
548 |
+
selected_datetime = datetime.combine(plan_date, plan_time)
|
549 |
+
|
550 |
+
if st.button("📅 Generate AI Plan"):
|
551 |
+
suggestion = get_llama_suggestion(
|
552 |
+
st.session_state.overall_emotion_label,
|
553 |
+
st.session_state.tasks,
|
554 |
+
selected_datetime # Pass full datetime object
|
555 |
+
)
|
556 |
+
st.markdown(f'<div class="info-box">{suggestion}</div>', unsafe_allow_html=True)
|
557 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
558 |
+
|
task_css.py
ADDED
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def get_custom_css():
|
2 |
+
return """
|
3 |
+
<style>
|
4 |
+
:root {
|
5 |
+
/* Refined Color Palette */
|
6 |
+
--primary-blue: #3B82F6; /* Vibrant Blue */
|
7 |
+
--primary-dark: #1E40AF; /* Deeper Blue */
|
8 |
+
--accent-teal: #0EA5E9; /* Bright Teal */
|
9 |
+
--background-light: #F9FAFB; /* Soft White */
|
10 |
+
--text-dark: #1E293B; /* Deep Navy */
|
11 |
+
--text-medium: #475569; /* Medium Slate */
|
12 |
+
--accent-orange: #F97316; /* Warm Orange */
|
13 |
+
--success-green: #10B981; /* Emerald Green */
|
14 |
+
--warning-yellow: #FBBF24; /* Amber Yellow */
|
15 |
+
--error-red: #EF4444; /* Cherry Red */
|
16 |
+
|
17 |
+
/* Refined Gradients */
|
18 |
+
--gradient-primary: linear-gradient(135deg, var(--primary-blue), var(--primary-dark));
|
19 |
+
--gradient-accent: linear-gradient(135deg, var(--accent-teal), #38BDF8);
|
20 |
+
--gradient-warm: linear-gradient(135deg, var(--accent-orange), #FB923C);
|
21 |
+
}
|
22 |
+
|
23 |
+
/* Global Reset with Professional Typography */
|
24 |
+
body, .stApp {
|
25 |
+
font-family: 'Inter', system-ui, -apple-system, sans-serif;
|
26 |
+
background-color: var(--background-light) !important;
|
27 |
+
color: var(--text-dark);
|
28 |
+
line-height: 1.6;
|
29 |
+
letter-spacing: -0.011em;
|
30 |
+
}
|
31 |
+
|
32 |
+
/* App Container with Refined Depth */
|
33 |
+
[data-testid="stAppViewContainer"] {
|
34 |
+
background-color: var(--background-light) !important;
|
35 |
+
max-width: 1100px;
|
36 |
+
margin: 0 auto;
|
37 |
+
padding: 2.5rem;
|
38 |
+
border-radius: 16px;
|
39 |
+
box-shadow:
|
40 |
+
0 20px 25px -5px rgba(59, 130, 246, 0.1),
|
41 |
+
0 10px 10px -5px rgba(59, 130, 246, 0.04),
|
42 |
+
inset 0 1px 0 rgba(255, 255, 255, 0.8);
|
43 |
+
transition: all 0.3s ease;
|
44 |
+
}
|
45 |
+
|
46 |
+
/* Professional Header */
|
47 |
+
.main-header {
|
48 |
+
display: flex;
|
49 |
+
align-items: center;
|
50 |
+
justify-content: center;
|
51 |
+
margin-bottom: 2rem;
|
52 |
+
color: var(--primary-blue);
|
53 |
+
font-size: 2rem;
|
54 |
+
font-weight: 700;
|
55 |
+
letter-spacing: -0.03em;
|
56 |
+
}
|
57 |
+
|
58 |
+
.main-header::before {
|
59 |
+
|
60 |
+
margin-right: 15px;
|
61 |
+
font-size: 2.2rem;
|
62 |
+
transition: transform 0.3s ease;
|
63 |
+
}
|
64 |
+
|
65 |
+
.main-title:hover::before {
|
66 |
+
transform: scale(1.1) rotate(5deg);
|
67 |
+
}
|
68 |
+
|
69 |
+
/* Professional Card Sections */
|
70 |
+
.emotion-analysis, .task-input {
|
71 |
+
background-color: white;
|
72 |
+
border-radius: 12px;
|
73 |
+
padding: 1.8rem;
|
74 |
+
box-shadow:
|
75 |
+
0 4px 6px -1px rgba(59, 130, 246, 0.1),
|
76 |
+
0 2px 4px -1px rgba(59, 130, 246, 0.06);
|
77 |
+
margin-bottom: 1.5rem;
|
78 |
+
transition: all 0.2s ease;
|
79 |
+
border-top: 3px solid var(--primary-blue);
|
80 |
+
}
|
81 |
+
|
82 |
+
.emotion-analysis:hover, .task-input:hover {
|
83 |
+
transform: translateY(-3px);
|
84 |
+
box-shadow:
|
85 |
+
0 10px 15px -3px rgba(59, 130, 246, 0.1),
|
86 |
+
0 4px 6px -2px rgba(59, 130, 246, 0.05);
|
87 |
+
}
|
88 |
+
|
89 |
+
/* Section Headers */
|
90 |
+
.stMarkdown h3 {
|
91 |
+
color: var(--primary-blue);
|
92 |
+
font-weight: 600;
|
93 |
+
font-size: 1.3rem;
|
94 |
+
margin-bottom: 1rem;
|
95 |
+
letter-spacing: -0.01em;
|
96 |
+
border-bottom: 1px solid rgba(59, 130, 246, 0.2);
|
97 |
+
padding-bottom: 0.5rem;
|
98 |
+
}
|
99 |
+
|
100 |
+
/* Polished Input Elements */
|
101 |
+
.stTextArea textarea,
|
102 |
+
.stTextInput>div>div>input {
|
103 |
+
border: 1px solid rgba(59, 130, 246, 0.3) !important;
|
104 |
+
border-radius: 8px !important;
|
105 |
+
padding: 12px 14px !important;
|
106 |
+
background-color: white !important;
|
107 |
+
color: var(--text-dark) !important;
|
108 |
+
font-weight: 400;
|
109 |
+
transition: all 0.2s ease !important;
|
110 |
+
box-shadow: 0 1px 2px rgba(0, 0, 0, 0.05) !important;
|
111 |
+
}
|
112 |
+
|
113 |
+
.stTextArea textarea:focus,
|
114 |
+
.stTextInput>div>div>input:focus {
|
115 |
+
border-color: var(--primary-blue) !important;
|
116 |
+
box-shadow:
|
117 |
+
0 0 0 3px rgba(59, 130, 246, 0.15) !important,
|
118 |
+
0 1px 2px rgba(0, 0, 0, 0.05) !important;
|
119 |
+
outline: none !important;
|
120 |
+
}
|
121 |
+
|
122 |
+
/* Contextual Badges */
|
123 |
+
.emotion-badge {
|
124 |
+
background: var(--gradient-accent);
|
125 |
+
color: white !important;
|
126 |
+
border-radius: 6px;
|
127 |
+
padding: 8px 12px;
|
128 |
+
font-weight: 600;
|
129 |
+
display: inline-block;
|
130 |
+
margin-top: 10px;
|
131 |
+
box-shadow: 0 2px 4px rgba(14, 165, 233, 0.2);
|
132 |
+
}
|
133 |
+
|
134 |
+
.warning-badge {
|
135 |
+
background: var(--gradient-warm);
|
136 |
+
color: white !important;
|
137 |
+
border-radius: 6px;
|
138 |
+
padding: 8px 12px;
|
139 |
+
font-weight: 600;
|
140 |
+
display: inline-block;
|
141 |
+
box-shadow: 0 2px 4px rgba(249, 115, 22, 0.2);
|
142 |
+
}
|
143 |
+
|
144 |
+
/* Professional Button */
|
145 |
+
.stButton>button {
|
146 |
+
background: var(--gradient-primary) !important;
|
147 |
+
color: white !important;
|
148 |
+
border: none !important;
|
149 |
+
border-radius: 8px !important;
|
150 |
+
padding: 10px 20px !important;
|
151 |
+
font-weight: 600;
|
152 |
+
font-size: 0.9rem;
|
153 |
+
letter-spacing: 0.02em;
|
154 |
+
transition: all 0.2s ease !important;
|
155 |
+
box-shadow:
|
156 |
+
0 4px 6px -1px rgba(59, 130, 246, 0.2),
|
157 |
+
0 2px 4px -1px rgba(59, 130, 246, 0.1);
|
158 |
+
}
|
159 |
+
|
160 |
+
.stButton>button:hover {
|
161 |
+
transform: translateY(-2px);
|
162 |
+
box-shadow:
|
163 |
+
0 6px 10px -1px rgba(59, 130, 246, 0.25),
|
164 |
+
0 4px 6px -1px rgba(59, 130, 246, 0.15);
|
165 |
+
}
|
166 |
+
|
167 |
+
.stButton>button:active {
|
168 |
+
transform: translateY(0);
|
169 |
+
box-shadow:
|
170 |
+
0 2px 4px -1px rgba(59, 130, 246, 0.2),
|
171 |
+
0 1px 2px -1px rgba(59, 130, 246, 0.1);
|
172 |
+
}
|
173 |
+
|
174 |
+
/* Improved Slider */
|
175 |
+
.stSlider {
|
176 |
+
margin-top: 12px;
|
177 |
+
}
|
178 |
+
|
179 |
+
.stSlider > div > div > div {
|
180 |
+
background-color: #CBD5E1 !important;
|
181 |
+
height: 6px !important;
|
182 |
+
border-radius: 3px !important;
|
183 |
+
}
|
184 |
+
|
185 |
+
.stSlider > div > div > div > div {
|
186 |
+
background: var(--primary-blue) !important;
|
187 |
+
box-shadow: 0 0 0 2px white, 0 0 0 3px rgba(59, 130, 246, 0.2) !important;
|
188 |
+
width: 18px !important;
|
189 |
+
height: 18px !important;
|
190 |
+
border-radius: 50% !important;
|
191 |
+
transition: transform 0.2s ease !important;
|
192 |
+
}
|
193 |
+
|
194 |
+
.stSlider > div > div > div > div:hover {
|
195 |
+
transform: scale(1.15) !important;
|
196 |
+
}
|
197 |
+
|
198 |
+
/* Progress Bar */
|
199 |
+
.stProgress > div > div > div {
|
200 |
+
background-color: var(--primary-blue) !important;
|
201 |
+
border-radius: 4px !important;
|
202 |
+
}
|
203 |
+
|
204 |
+
/* Select Boxes */
|
205 |
+
.stSelectbox label {
|
206 |
+
color: var(--text-medium) !important;
|
207 |
+
font-weight: 500 !important;
|
208 |
+
}
|
209 |
+
|
210 |
+
.stSelectbox > div > div > div {
|
211 |
+
background-color: white !important;
|
212 |
+
border: 1px solid rgba(59, 130, 246, 0.3) !important;
|
213 |
+
border-radius: 8px !important;
|
214 |
+
padding: 4px 8px !important;
|
215 |
+
}
|
216 |
+
|
217 |
+
/* Checkbox */
|
218 |
+
.stCheckbox label {
|
219 |
+
color: var(--text-medium) !important;
|
220 |
+
font-size: 0.95rem !important;
|
221 |
+
}
|
222 |
+
|
223 |
+
/* Tabs */
|
224 |
+
.stTabs [data-baseweb="tab-list"] {
|
225 |
+
gap: 2px;
|
226 |
+
background-color: rgba(59, 130, 246, 0.1) !important;
|
227 |
+
border-radius: 8px !important;
|
228 |
+
padding: 2px !important;
|
229 |
+
}
|
230 |
+
|
231 |
+
.stTabs [data-baseweb="tab"] {
|
232 |
+
background-color: transparent !important;
|
233 |
+
border-radius: 6px !important;
|
234 |
+
padding: 8px 16px !important;
|
235 |
+
border: none !important;
|
236 |
+
color: var(--text-medium) !important;
|
237 |
+
font-weight: 500 !important;
|
238 |
+
transition: all 0.2s ease !important;
|
239 |
+
}
|
240 |
+
|
241 |
+
.stTabs [aria-selected="true"] {
|
242 |
+
background-color: white !important;
|
243 |
+
color: var(--primary-blue) !important;
|
244 |
+
font-weight: 600 !important;
|
245 |
+
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
|
246 |
+
}
|
247 |
+
|
248 |
+
/* Info Boxes */
|
249 |
+
.info-box {
|
250 |
+
background-color: rgba(14, 165, 233, 0.1);
|
251 |
+
border-left: 3px solid var(--accent-teal);
|
252 |
+
border-radius: 6px;
|
253 |
+
padding: 15px;
|
254 |
+
margin: 15px 0;
|
255 |
+
color: var(--text-dark);
|
256 |
+
}
|
257 |
+
|
258 |
+
.success-box {
|
259 |
+
background-color: rgba(16, 185, 129, 0.1);
|
260 |
+
border-left: 3px solid var(--success-green);
|
261 |
+
border-radius: 6px;
|
262 |
+
padding: 15px;
|
263 |
+
margin: 15px 0;
|
264 |
+
}
|
265 |
+
|
266 |
+
.warning-box {
|
267 |
+
background-color: rgba(251, 191, 36, 0.1);
|
268 |
+
border-left: 3px solid var(--warning-yellow);
|
269 |
+
border-radius: 6px;
|
270 |
+
padding: 15px;
|
271 |
+
margin: 15px 0;
|
272 |
+
}
|
273 |
+
|
274 |
+
.error-box {
|
275 |
+
background-color: rgba(239, 68, 68, 0.1);
|
276 |
+
border-left: 3px solid var(--error-red);
|
277 |
+
border-radius: 6px;
|
278 |
+
padding: 15px;
|
279 |
+
margin: 15px 0;
|
280 |
+
}
|
281 |
+
|
282 |
+
/* Data Elements */
|
283 |
+
.metric-card {
|
284 |
+
background-color: white;
|
285 |
+
border-radius: 10px;
|
286 |
+
padding: 20px;
|
287 |
+
display: flex;
|
288 |
+
flex-direction: column;
|
289 |
+
align-items: center;
|
290 |
+
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.05);
|
291 |
+
border-top: 3px solid var(--primary-blue);
|
292 |
+
}
|
293 |
+
|
294 |
+
.metric-value {
|
295 |
+
font-size: 2rem;
|
296 |
+
font-weight: 700;
|
297 |
+
color: var(--primary-blue);
|
298 |
+
}
|
299 |
+
|
300 |
+
.metric-label {
|
301 |
+
font-size: 0.9rem;
|
302 |
+
color: var(--text-medium);
|
303 |
+
margin-top: 5px;
|
304 |
+
}
|
305 |
+
|
306 |
+
/* Action Menu */
|
307 |
+
.action-menu {
|
308 |
+
position: relative;
|
309 |
+
display: inline-block;
|
310 |
+
}
|
311 |
+
|
312 |
+
.action-menu-content {
|
313 |
+
display: none;
|
314 |
+
position: absolute;
|
315 |
+
right: 0;
|
316 |
+
background-color: white;
|
317 |
+
min-width: 120px;
|
318 |
+
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
|
319 |
+
z-index: 1;
|
320 |
+
border-radius: 8px;
|
321 |
+
overflow: hidden;
|
322 |
+
}
|
323 |
+
|
324 |
+
.action-menu-content a {
|
325 |
+
color: var(--text-dark);
|
326 |
+
padding: 12px 16px;
|
327 |
+
text-decoration: none;
|
328 |
+
display: block;
|
329 |
+
transition: background-color 0.2s ease;
|
330 |
+
}
|
331 |
+
|
332 |
+
.action-menu-content a:hover {
|
333 |
+
background-color: var(--primary-blue);
|
334 |
+
color: white;
|
335 |
+
}
|
336 |
+
|
337 |
+
.action-menu:hover .action-menu-content {
|
338 |
+
display: block;
|
339 |
+
}
|
340 |
+
|
341 |
+
.action-menu .three-dots {
|
342 |
+
cursor: pointer;
|
343 |
+
font-size: 1.5rem;
|
344 |
+
color: var(--text-medium);
|
345 |
+
}
|
346 |
+
|
347 |
+
/* Task Content Styling */
|
348 |
+
.task-content {
|
349 |
+
flex: 1;
|
350 |
+
padding-right: 20px;
|
351 |
+
}
|
352 |
+
|
353 |
+
.task-header {
|
354 |
+
display: flex;
|
355 |
+
justify-content: space-between;
|
356 |
+
align-items: center;
|
357 |
+
margin-bottom: 8px;
|
358 |
+
}
|
359 |
+
|
360 |
+
.task-title {
|
361 |
+
font-weight: 600;
|
362 |
+
color: var(--text-dark);
|
363 |
+
font-size: 1rem;
|
364 |
+
}
|
365 |
+
|
366 |
+
.priority-score {
|
367 |
+
background: var(--gradient-primary);
|
368 |
+
color: white;
|
369 |
+
padding: 4px 8px;
|
370 |
+
border-radius: 4px;
|
371 |
+
font-size: 0.85rem;
|
372 |
+
font-weight: 600;
|
373 |
+
}
|
374 |
+
|
375 |
+
.task-details {
|
376 |
+
display: flex;
|
377 |
+
gap: 16px;
|
378 |
+
}
|
379 |
+
|
380 |
+
.task-stat {
|
381 |
+
color: var(--text-medium);
|
382 |
+
font-size: 0.9rem;
|
383 |
+
}
|
384 |
+
|
385 |
+
/* Priority Task List */
|
386 |
+
.priority-task {
|
387 |
+
display: flex;
|
388 |
+
justify-content: space-between;
|
389 |
+
align-items: center;
|
390 |
+
padding: 15px;
|
391 |
+
border-radius: 8px;
|
392 |
+
margin-bottom: 8px;
|
393 |
+
background-color: white;
|
394 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
|
395 |
+
}
|
396 |
+
|
397 |
+
.high-priority {
|
398 |
+
border-left: 4px solid var(--error-red);
|
399 |
+
}
|
400 |
+
|
401 |
+
.medium-priority {
|
402 |
+
border-left: 4px solid var(--warning-yellow);
|
403 |
+
}
|
404 |
+
|
405 |
+
/* Responsive Design */
|
406 |
+
@media (max-width: 768px) {
|
407 |
+
[data-testid="stAppViewContainer"] {
|
408 |
+
padding: 1.2rem;
|
409 |
+
border-radius: 12px;
|
410 |
+
}
|
411 |
+
|
412 |
+
.main-title {
|
413 |
+
font-size: 1.8rem;
|
414 |
+
}
|
415 |
+
|
416 |
+
.emotion-analysis, .task-input {
|
417 |
+
padding: 1.2rem;
|
418 |
+
}
|
419 |
+
|
420 |
+
.metric-value {
|
421 |
+
font-size: 1.6rem;
|
422 |
+
}
|
423 |
+
}
|
424 |
+
|
425 |
+
/* Loading Spinner */
|
426 |
+
.loading-container {
|
427 |
+
display: flex;
|
428 |
+
flex-direction: column;
|
429 |
+
align-items: center;
|
430 |
+
justify-content: center;
|
431 |
+
height: 60vh;
|
432 |
+
}
|
433 |
+
|
434 |
+
.loading-spinner {
|
435 |
+
width: 50px;
|
436 |
+
height: 50px;
|
437 |
+
border: 5px solid #f3f3f3;
|
438 |
+
border-top: 5px solid var(--primary-blue);
|
439 |
+
border-radius: 50%;
|
440 |
+
animation: spin 1s linear infinite;
|
441 |
+
margin-bottom: 20px;
|
442 |
+
}
|
443 |
+
|
444 |
+
@keyframes spin {
|
445 |
+
0% { transform: rotate(0deg); }
|
446 |
+
100% { transform: rotate(360deg); }
|
447 |
+
}
|
448 |
+
|
449 |
+
/* Status Messages */
|
450 |
+
.status-message {
|
451 |
+
background: white;
|
452 |
+
padding: 10px 15px;
|
453 |
+
border-radius: 8px;
|
454 |
+
margin: 5px 0;
|
455 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
456 |
+
}
|
457 |
+
</style>
|
458 |
+
"""
|
task_prioritizer.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import BertTokenizer, BertForSequenceClassification, DistilBertForSequenceClassification
|
3 |
+
from datetime import datetime
|
4 |
+
|
5 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
6 |
+
|
7 |
+
# Load the intent classifier model and tokenizer
|
8 |
+
num_intent_labels = 151 # Set the correct number of labels for the intent classifier
|
9 |
+
intent_model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=num_intent_labels)
|
10 |
+
intent_model.load_state_dict(torch.load("intent_classifier.pth"))
|
11 |
+
intent_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
12 |
+
intent_model.to(device)
|
13 |
+
intent_model.eval()
|
14 |
+
|
15 |
+
# Load the emotions model and tokenizer
|
16 |
+
emotions_model = DistilBertForSequenceClassification.from_pretrained("./saved_model")
|
17 |
+
emotions_tokenizer = BertTokenizer.from_pretrained("./saved_model")
|
18 |
+
emotions_model.to(device)
|
19 |
+
emotions_model.eval()
|
20 |
+
|
21 |
+
# Define the label names for emotions
|
22 |
+
emotion_label_names = ["admiration", "amusement", "anger", "annoyance", "approval", "caring", "confusion", "curiosity", "desire", "disappointment", "disapproval", "disgust", "embarrassment", "excitement", "fear", "gratitude", "grief", "joy", "love", "nervousness", "optimism", "pride", "realization", "relief", "remorse", "sadness", "surprise", "neutral"]
|
23 |
+
|
24 |
+
def predict_intent(sentence):
|
25 |
+
inputs = intent_tokenizer(sentence, return_tensors="pt", padding="max_length", truncation=True, max_length=128)
|
26 |
+
inputs = {key: val.to(device) for key, val in inputs.items()}
|
27 |
+
|
28 |
+
with torch.no_grad():
|
29 |
+
outputs = intent_model(**inputs)
|
30 |
+
predicted_class = torch.argmax(outputs.logits, dim=1).cpu().numpy()[0]
|
31 |
+
|
32 |
+
return predicted_class
|
33 |
+
|
34 |
+
def predict_emotion(sentence):
|
35 |
+
inputs = emotions_tokenizer(sentence, return_tensors="pt", padding="max_length", truncation=True, max_length=128)
|
36 |
+
inputs = {key: val.to(device) for key, val in inputs.items() if key != "token_type_ids"}
|
37 |
+
|
38 |
+
with torch.no_grad():
|
39 |
+
outputs = emotions_model(**inputs)
|
40 |
+
predicted_class = torch.argmax(outputs.logits, dim=1).cpu().numpy()[0]
|
41 |
+
|
42 |
+
return predicted_class, emotion_label_names[predicted_class]
|
43 |
+
|
44 |
+
def calculate_priority_score(intent, emotion, time_remaining):
|
45 |
+
# Example priority score calculation
|
46 |
+
intent_weight = 0.4
|
47 |
+
emotion_weight = 0.3
|
48 |
+
time_weight = 0.3
|
49 |
+
|
50 |
+
# Normalize time_remaining to a score between 0 and 1
|
51 |
+
time_score = max(0, min(1, 1 - (time_remaining.total_seconds() / (24 * 3600))))
|
52 |
+
|
53 |
+
# Calculate priority score
|
54 |
+
priority_score = (intent * intent_weight) + (emotion * emotion_weight) + (time_score * time_weight)
|
55 |
+
return priority_score
|
56 |
+
|
57 |
+
def prioritize_task(task_description, due_date_time, predicted_emotion, predicted_label_name):
|
58 |
+
predicted_intent = predict_intent(task_description)
|
59 |
+
|
60 |
+
# Calculate time remaining until the due date and time
|
61 |
+
due_date_time = datetime.strptime(due_date_time, "%Y-%m-%d %H:%M:%S")
|
62 |
+
time_remaining = due_date_time - datetime.now()
|
63 |
+
|
64 |
+
priority_score = calculate_priority_score(predicted_intent, predicted_emotion, time_remaining)
|
65 |
+
|
66 |
+
return {
|
67 |
+
"description": task_description,
|
68 |
+
"due_date_time": due_date_time,
|
69 |
+
"time_remaining": time_remaining,
|
70 |
+
"predicted_intent": predicted_intent,
|
71 |
+
"predicted_emotion": predicted_emotion,
|
72 |
+
"predicted_label_name": predicted_label_name,
|
73 |
+
"priority_score": priority_score
|
74 |
+
}
|
75 |
+
|
76 |
+
# Example tasks
|
77 |
+
tasks = [
|
78 |
+
{"description": "Finish the report by tomorrow.", "due_date_time": "2025-03-02 09:00:00"},
|
79 |
+
{"description": "meeting", "due_date_time": "2025-03-02 12:00:00"},
|
80 |
+
{"description": "listen to music.", "due_date_time": "2025-03-02 15:00:00"},
|
81 |
+
{"description": "daily linkedin queens game.", "due_date_time": "2025-03-02 18:00:00"},
|
82 |
+
{"description": "prepare ppt", "due_date_time": "2025-03-02 21:00:00"}
|
83 |
+
]
|
84 |
+
|
85 |
+
# Overall emotion sentence
|
86 |
+
emotion_sentence = "I am feeling very tired and stressed now"
|
87 |
+
predicted_emotion, predicted_label_name = predict_emotion(emotion_sentence)
|
88 |
+
|
89 |
+
# Prioritize tasks
|
90 |
+
prioritized_tasks = []
|
91 |
+
for task in tasks:
|
92 |
+
prioritized_tasks.append(prioritize_task(task["description"], task["due_date_time"], predicted_emotion, predicted_label_name))
|
93 |
+
|
94 |
+
# Reorder tasks based on priority score (descending order)
|
95 |
+
prioritized_tasks.sort(key=lambda x: x["priority_score"], reverse=True)
|
96 |
+
|
97 |
+
# Print prioritized tasks
|
98 |
+
for task in prioritized_tasks:
|
99 |
+
print(f"Task Description: '{task['description']}'")
|
100 |
+
print(f"Due Date and Time: {task['due_date_time']}")
|
101 |
+
print(f"Time Remaining: {task['time_remaining']}")
|
102 |
+
print(f"Predicted Intent: {task['predicted_intent']}")
|
103 |
+
print(f"Predicted Emotion: {task['predicted_emotion']} ({task['predicted_label_name']})")
|
104 |
+
print(f"Priority Score: {task['priority_score']:.4f}")
|
105 |
+
print()
|
task_ui.py
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def get_custom_css():
|
2 |
+
return """
|
3 |
+
<style>
|
4 |
+
:root {
|
5 |
+
/* Refined Color Palette */
|
6 |
+
--primary-blue: #3B82F6; /* Vibrant Blue */
|
7 |
+
--primary-dark: #1E40AF; /* Deeper Blue */
|
8 |
+
--accent-teal: #0EA5E9; /* Bright Teal */
|
9 |
+
--background-light: #F9FAFB; /* Soft White */
|
10 |
+
--text-dark: #1E293B; /* Deep Navy */
|
11 |
+
--text-medium: #475569; /* Medium Slate */
|
12 |
+
--accent-orange: #F97316; /* Warm Orange */
|
13 |
+
--success-green: #10B981; /* Emerald Green */
|
14 |
+
--warning-yellow: #FBBF24; /* Amber Yellow */
|
15 |
+
--error-red: #EF4444; /* Cherry Red */
|
16 |
+
|
17 |
+
/* Refined Gradients */
|
18 |
+
--gradient-primary: linear-gradient(135deg, var(--primary-blue), var(--primary-dark));
|
19 |
+
--gradient-accent: linear-gradient(135deg, var(--accent-teal), #38BDF8);
|
20 |
+
--gradient-warm: linear-gradient(135deg, var(--accent-orange), #FB923C);
|
21 |
+
}
|
22 |
+
|
23 |
+
/* Global Reset with Professional Typography */
|
24 |
+
body, .stApp {
|
25 |
+
font-family: 'Inter', system-ui, -apple-system, sans-serif;
|
26 |
+
background-color: var(--background-light) !important;
|
27 |
+
color: var(--text-dark);
|
28 |
+
line-height: 1.6;
|
29 |
+
letter-spacing: -0.011em;
|
30 |
+
}
|
31 |
+
|
32 |
+
/* App Container with Refined Depth */
|
33 |
+
[data-testid="stAppViewContainer"] {
|
34 |
+
background-color: var(--background-light) !important;
|
35 |
+
max-width: 1100px;
|
36 |
+
margin: 0 auto;
|
37 |
+
padding: 2.5rem;
|
38 |
+
border-radius: 16px;
|
39 |
+
box-shadow:
|
40 |
+
0 20px 25px -5px rgba(59, 130, 246, 0.1),
|
41 |
+
0 10px 10px -5px rgba(59, 130, 246, 0.04),
|
42 |
+
inset 0 1px 0 rgba(255, 255, 255, 0.8);
|
43 |
+
transition: all 0.3s ease;
|
44 |
+
}
|
45 |
+
|
46 |
+
/* Professional Header */
|
47 |
+
.main-title {
|
48 |
+
display: flex;
|
49 |
+
align-items: center;
|
50 |
+
justify-content: center;
|
51 |
+
margin-bottom: 2rem;
|
52 |
+
color: var(--primary-blue);
|
53 |
+
font-size: 2.5rem;
|
54 |
+
font-weight: 700;
|
55 |
+
letter-spacing: -0.03em;
|
56 |
+
}
|
57 |
+
|
58 |
+
.main-title::before {
|
59 |
+
|
60 |
+
margin-right: 15px;
|
61 |
+
font-size: 2.2rem;
|
62 |
+
transition: transform 0.3s ease;
|
63 |
+
}
|
64 |
+
|
65 |
+
.main-title:hover::before {
|
66 |
+
transform: scale(1.1) rotate(5deg);
|
67 |
+
}
|
68 |
+
|
69 |
+
/* Professional Card Sections */
|
70 |
+
.emotion-analysis, .task-input {
|
71 |
+
background-color: white;
|
72 |
+
border-radius: 12px;
|
73 |
+
padding: 1.8rem;
|
74 |
+
box-shadow:
|
75 |
+
0 4px 6px -1px rgba(59, 130, 246, 0.1),
|
76 |
+
0 2px 4px -1px rgba(59, 130, 246, 0.06);
|
77 |
+
margin-bottom: 1.5rem;
|
78 |
+
transition: all 0.2s ease;
|
79 |
+
border-top: 3px solid var(--primary-blue);
|
80 |
+
}
|
81 |
+
|
82 |
+
.emotion-analysis:hover, .task-input:hover {
|
83 |
+
transform: translateY(-3px);
|
84 |
+
box-shadow:
|
85 |
+
0 10px 15px -3px rgba(59, 130, 246, 0.1),
|
86 |
+
0 4px 6px -2px rgba(59, 130, 246, 0.05);
|
87 |
+
}
|
88 |
+
|
89 |
+
/* Section Headers */
|
90 |
+
.stMarkdown h3 {
|
91 |
+
color: var(--primary-blue);
|
92 |
+
font-weight: 600;
|
93 |
+
font-size: 1.3rem;
|
94 |
+
margin-bottom: 1rem;
|
95 |
+
letter-spacing: -0.01em;
|
96 |
+
border-bottom: 1px solid rgba(59, 130, 246, 0.2);
|
97 |
+
padding-bottom: 0.5rem;
|
98 |
+
}
|
99 |
+
|
100 |
+
/* Polished Input Elements */
|
101 |
+
.stTextArea textarea,
|
102 |
+
.stTextInput>div>div>input {
|
103 |
+
border: 1px solid rgba(59, 130, 246, 0.3) !important;
|
104 |
+
border-radius: 8px !important;
|
105 |
+
padding: 12px 14px !important;
|
106 |
+
background-color: white !important;
|
107 |
+
color: var(--text-dark) !important;
|
108 |
+
font-weight: 400;
|
109 |
+
transition: all 0.2s ease !important;
|
110 |
+
box-shadow: 0 1px 2px rgba(0, 0, 0, 0.05) !important;
|
111 |
+
}
|
112 |
+
|
113 |
+
.stTextArea textarea:focus,
|
114 |
+
.stTextInput>div>div>input:focus {
|
115 |
+
border-color: var(--primary-blue) !important;
|
116 |
+
box-shadow:
|
117 |
+
0 0 0 3px rgba(59, 130, 246, 0.15) !important,
|
118 |
+
0 1px 2px rgba(0, 0, 0, 0.05) !important;
|
119 |
+
outline: none !important;
|
120 |
+
}
|
121 |
+
|
122 |
+
/* Contextual Badges */
|
123 |
+
.emotion-badge {
|
124 |
+
background: var(--gradient-accent);
|
125 |
+
color: white !important;
|
126 |
+
border-radius: 6px;
|
127 |
+
padding: 8px 12px;
|
128 |
+
font-weight: 600;
|
129 |
+
display: inline-block;
|
130 |
+
margin-top: 10px;
|
131 |
+
box-shadow: 0 2px 4px rgba(14, 165, 233, 0.2);
|
132 |
+
}
|
133 |
+
|
134 |
+
.warning-badge {
|
135 |
+
background: var(--gradient-warm);
|
136 |
+
color: white !important;
|
137 |
+
border-radius: 6px;
|
138 |
+
padding: 8px 12px;
|
139 |
+
font-weight: 600;
|
140 |
+
display: inline-block;
|
141 |
+
box-shadow: 0 2px 4px rgba(249, 115, 22, 0.2);
|
142 |
+
}
|
143 |
+
|
144 |
+
/* Professional Button */
|
145 |
+
.stButton>button {
|
146 |
+
background: var(--gradient-primary) !important;
|
147 |
+
color: white !important;
|
148 |
+
border: none !important;
|
149 |
+
border-radius: 8px !important;
|
150 |
+
padding: 10px 20px !important;
|
151 |
+
font-weight: 600;
|
152 |
+
font-size: 0.9rem;
|
153 |
+
letter-spacing: 0.02em;
|
154 |
+
transition: all 0.2s ease !important;
|
155 |
+
box-shadow:
|
156 |
+
0 4px 6px -1px rgba(59, 130, 246, 0.2),
|
157 |
+
0 2px 4px -1px rgba(59, 130, 246, 0.1);
|
158 |
+
}
|
159 |
+
|
160 |
+
.stButton>button:hover {
|
161 |
+
transform: translateY(-2px);
|
162 |
+
box-shadow:
|
163 |
+
0 6px 10px -1px rgba(59, 130, 246, 0.25),
|
164 |
+
0 4px 6px -1px rgba(59, 130, 246, 0.15);
|
165 |
+
}
|
166 |
+
|
167 |
+
.stButton>button:active {
|
168 |
+
transform: translateY(0);
|
169 |
+
box-shadow:
|
170 |
+
0 2px 4px -1px rgba(59, 130, 246, 0.2),
|
171 |
+
0 1px 2px -1px rgba(59, 130, 246, 0.1);
|
172 |
+
}
|
173 |
+
|
174 |
+
/* Improved Slider */
|
175 |
+
.stSlider {
|
176 |
+
margin-top: 12px;
|
177 |
+
}
|
178 |
+
|
179 |
+
.stSlider > div > div > div {
|
180 |
+
background-color: #CBD5E1 !important;
|
181 |
+
height: 6px !important;
|
182 |
+
border-radius: 3px !important;
|
183 |
+
}
|
184 |
+
|
185 |
+
.stSlider > div > div > div > div {
|
186 |
+
background: var(--primary-blue) !important;
|
187 |
+
box-shadow: 0 0 0 2px white, 0 0 0 3px rgba(59, 130, 246, 0.2) !important;
|
188 |
+
width: 18px !important;
|
189 |
+
height: 18px !important;
|
190 |
+
border-radius: 50% !important;
|
191 |
+
transition: transform 0.2s ease !important;
|
192 |
+
}
|
193 |
+
|
194 |
+
.stSlider > div > div > div > div:hover {
|
195 |
+
transform: scale(1.15) !important;
|
196 |
+
}
|
197 |
+
|
198 |
+
/* Progress Bar */
|
199 |
+
.stProgress > div > div > div {
|
200 |
+
background-color: var(--primary-blue) !important;
|
201 |
+
border-radius: 4px !important;
|
202 |
+
}
|
203 |
+
|
204 |
+
/* Select Boxes */
|
205 |
+
.stSelectbox label {
|
206 |
+
color: var(--text-medium) !important;
|
207 |
+
font-weight: 500 !important;
|
208 |
+
}
|
209 |
+
|
210 |
+
.stSelectbox > div > div > div {
|
211 |
+
background-color: white !important;
|
212 |
+
border: 1px solid rgba(59, 130, 246, 0.3) !important;
|
213 |
+
border-radius: 8px !important;
|
214 |
+
padding: 4px 8px !important;
|
215 |
+
}
|
216 |
+
|
217 |
+
/* Checkbox */
|
218 |
+
.stCheckbox label {
|
219 |
+
color: var(--text-medium) !important;
|
220 |
+
font-size: 0.95rem !important;
|
221 |
+
}
|
222 |
+
|
223 |
+
/* Tabs */
|
224 |
+
.stTabs [data-baseweb="tab-list"] {
|
225 |
+
gap: 2px;
|
226 |
+
background-color: rgba(59, 130, 246, 0.1) !important;
|
227 |
+
border-radius: 8px !important;
|
228 |
+
padding: 2px !important;
|
229 |
+
}
|
230 |
+
|
231 |
+
.stTabs [data-baseweb="tab"] {
|
232 |
+
background-color: transparent !important;
|
233 |
+
border-radius: 6px !important;
|
234 |
+
padding: 8px 16px !important;
|
235 |
+
border: none !important;
|
236 |
+
color: var(--text-medium) !important;
|
237 |
+
font-weight: 500 !important;
|
238 |
+
transition: all 0.2s ease !important;
|
239 |
+
}
|
240 |
+
|
241 |
+
.stTabs [aria-selected="true"] {
|
242 |
+
background-color: white !important;
|
243 |
+
color: var(--primary-blue) !important;
|
244 |
+
font-weight: 600 !important;
|
245 |
+
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
|
246 |
+
}
|
247 |
+
|
248 |
+
/* Info Boxes */
|
249 |
+
.info-box {
|
250 |
+
background-color: rgba(14, 165, 233, 0.1);
|
251 |
+
border-left: 3px solid var(--accent-teal);
|
252 |
+
border-radius: 6px;
|
253 |
+
padding: 15px;
|
254 |
+
margin: 15px 0;
|
255 |
+
color: var(--text-dark);
|
256 |
+
}
|
257 |
+
|
258 |
+
.success-box {
|
259 |
+
background-color: rgba(16, 185, 129, 0.1);
|
260 |
+
border-left: 3px solid var(--success-green);
|
261 |
+
border-radius: 6px;
|
262 |
+
padding: 15px;
|
263 |
+
margin: 15px 0;
|
264 |
+
}
|
265 |
+
|
266 |
+
.warning-box {
|
267 |
+
background-color: rgba(251, 191, 36, 0.1);
|
268 |
+
border-left: 3px solid var(--warning-yellow);
|
269 |
+
border-radius: 6px;
|
270 |
+
padding: 15px;
|
271 |
+
margin: 15px 0;
|
272 |
+
}
|
273 |
+
|
274 |
+
.error-box {
|
275 |
+
background-color: rgba(239, 68, 68, 0.1);
|
276 |
+
border-left: 3px solid var(--error-red);
|
277 |
+
border-radius: 6px;
|
278 |
+
padding: 15px;
|
279 |
+
margin: 15px 0;
|
280 |
+
}
|
281 |
+
|
282 |
+
/* Data Elements */
|
283 |
+
.metric-card {
|
284 |
+
background-color: white;
|
285 |
+
border-radius: 10px;
|
286 |
+
padding: 20px;
|
287 |
+
display: flex;
|
288 |
+
flex-direction: column;
|
289 |
+
align-items: center;
|
290 |
+
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.05);
|
291 |
+
border-top: 3px solid var(--primary-blue);
|
292 |
+
}
|
293 |
+
|
294 |
+
.metric-value {
|
295 |
+
font-size: 2rem;
|
296 |
+
font-weight: 700;
|
297 |
+
color: var(--primary-blue);
|
298 |
+
}
|
299 |
+
|
300 |
+
.metric-label {
|
301 |
+
font-size: 0.9rem;
|
302 |
+
color: var(--text-medium);
|
303 |
+
margin-top: 5px;
|
304 |
+
}
|
305 |
+
|
306 |
+
/* Responsive Design */
|
307 |
+
@media (max-width: 768px) {
|
308 |
+
[data-testid="stAppViewContainer"] {
|
309 |
+
padding: 1.2rem;
|
310 |
+
border-radius: 12px;
|
311 |
+
}
|
312 |
+
|
313 |
+
.main-title {
|
314 |
+
font-size: 1.8rem;
|
315 |
+
}
|
316 |
+
|
317 |
+
.emotion-analysis, .task-input {
|
318 |
+
padding: 1.2rem;
|
319 |
+
}
|
320 |
+
|
321 |
+
.metric-value {
|
322 |
+
font-size: 1.6rem;
|
323 |
+
}
|
324 |
+
}
|
325 |
+
</style>
|
326 |
+
"""
|
test_results.csv
ADDED
@@ -0,0 +1,5428 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
true_labels,predicted_labels
|
2 |
+
25,24
|
3 |
+
0,0
|
4 |
+
13,0
|
5 |
+
15,15
|
6 |
+
27,27
|
7 |
+
15,15
|
8 |
+
15,15
|
9 |
+
15,0
|
10 |
+
24,24
|
11 |
+
25,9
|
12 |
+
3,27
|
13 |
+
1,1
|
14 |
+
8,8
|
15 |
+
0,0
|
16 |
+
14,14
|
17 |
+
10,10
|
18 |
+
14,11
|
19 |
+
25,27
|
20 |
+
1,1
|
21 |
+
15,15
|
22 |
+
1,3
|
23 |
+
24,7
|
24 |
+
27,27
|
25 |
+
27,27
|
26 |
+
6,27
|
27 |
+
27,27
|
28 |
+
0,18
|
29 |
+
27,27
|
30 |
+
27,4
|
31 |
+
7,7
|
32 |
+
27,27
|
33 |
+
27,7
|
34 |
+
27,27
|
35 |
+
20,20
|
36 |
+
4,27
|
37 |
+
27,27
|
38 |
+
27,27
|
39 |
+
27,27
|
40 |
+
27,27
|
41 |
+
0,1
|
42 |
+
10,27
|
43 |
+
5,27
|
44 |
+
27,27
|
45 |
+
27,27
|
46 |
+
17,0
|
47 |
+
27,10
|
48 |
+
1,1
|
49 |
+
1,1
|
50 |
+
27,10
|
51 |
+
4,27
|
52 |
+
27,27
|
53 |
+
3,1
|
54 |
+
10,27
|
55 |
+
27,27
|
56 |
+
14,14
|
57 |
+
27,4
|
58 |
+
8,27
|
59 |
+
27,27
|
60 |
+
24,24
|
61 |
+
15,15
|
62 |
+
27,6
|
63 |
+
18,0
|
64 |
+
18,18
|
65 |
+
27,8
|
66 |
+
15,15
|
67 |
+
25,24
|
68 |
+
14,5
|
69 |
+
6,7
|
70 |
+
9,27
|
71 |
+
3,3
|
72 |
+
3,10
|
73 |
+
27,27
|
74 |
+
27,27
|
75 |
+
0,1
|
76 |
+
5,5
|
77 |
+
10,3
|
78 |
+
0,0
|
79 |
+
14,27
|
80 |
+
4,4
|
81 |
+
2,3
|
82 |
+
0,27
|
83 |
+
20,27
|
84 |
+
15,15
|
85 |
+
7,7
|
86 |
+
3,27
|
87 |
+
6,7
|
88 |
+
10,10
|
89 |
+
27,27
|
90 |
+
0,18
|
91 |
+
15,15
|
92 |
+
7,17
|
93 |
+
10,5
|
94 |
+
27,27
|
95 |
+
22,4
|
96 |
+
26,26
|
97 |
+
27,27
|
98 |
+
14,14
|
99 |
+
13,17
|
100 |
+
27,27
|
101 |
+
5,0
|
102 |
+
3,27
|
103 |
+
6,6
|
104 |
+
27,27
|
105 |
+
9,0
|
106 |
+
2,27
|
107 |
+
4,27
|
108 |
+
10,10
|
109 |
+
3,27
|
110 |
+
2,3
|
111 |
+
27,27
|
112 |
+
0,0
|
113 |
+
27,27
|
114 |
+
5,27
|
115 |
+
17,18
|
116 |
+
27,27
|
117 |
+
0,0
|
118 |
+
27,27
|
119 |
+
20,20
|
120 |
+
5,5
|
121 |
+
27,27
|
122 |
+
26,26
|
123 |
+
27,27
|
124 |
+
1,1
|
125 |
+
4,4
|
126 |
+
7,7
|
127 |
+
8,2
|
128 |
+
0,27
|
129 |
+
4,10
|
130 |
+
1,1
|
131 |
+
3,27
|
132 |
+
7,7
|
133 |
+
27,14
|
134 |
+
3,27
|
135 |
+
22,0
|
136 |
+
20,27
|
137 |
+
27,27
|
138 |
+
14,14
|
139 |
+
10,11
|
140 |
+
2,2
|
141 |
+
27,8
|
142 |
+
27,27
|
143 |
+
10,10
|
144 |
+
18,18
|
145 |
+
6,4
|
146 |
+
1,1
|
147 |
+
11,11
|
148 |
+
17,17
|
149 |
+
27,7
|
150 |
+
20,27
|
151 |
+
27,27
|
152 |
+
27,27
|
153 |
+
27,27
|
154 |
+
3,3
|
155 |
+
12,1
|
156 |
+
15,15
|
157 |
+
27,27
|
158 |
+
27,0
|
159 |
+
27,26
|
160 |
+
27,27
|
161 |
+
27,5
|
162 |
+
27,27
|
163 |
+
10,27
|
164 |
+
27,27
|
165 |
+
24,24
|
166 |
+
27,7
|
167 |
+
2,2
|
168 |
+
7,7
|
169 |
+
27,27
|
170 |
+
2,2
|
171 |
+
15,15
|
172 |
+
27,27
|
173 |
+
7,7
|
174 |
+
1,1
|
175 |
+
9,8
|
176 |
+
4,15
|
177 |
+
1,1
|
178 |
+
26,14
|
179 |
+
5,24
|
180 |
+
0,0
|
181 |
+
27,0
|
182 |
+
25,25
|
183 |
+
6,6
|
184 |
+
24,27
|
185 |
+
27,27
|
186 |
+
22,22
|
187 |
+
27,27
|
188 |
+
15,15
|
189 |
+
26,3
|
190 |
+
27,27
|
191 |
+
3,3
|
192 |
+
15,15
|
193 |
+
10,3
|
194 |
+
19,14
|
195 |
+
0,0
|
196 |
+
17,1
|
197 |
+
5,5
|
198 |
+
26,26
|
199 |
+
27,27
|
200 |
+
27,27
|
201 |
+
3,9
|
202 |
+
22,27
|
203 |
+
27,27
|
204 |
+
11,3
|
205 |
+
27,27
|
206 |
+
27,27
|
207 |
+
27,27
|
208 |
+
27,27
|
209 |
+
22,27
|
210 |
+
17,17
|
211 |
+
20,20
|
212 |
+
27,27
|
213 |
+
14,27
|
214 |
+
17,0
|
215 |
+
15,15
|
216 |
+
27,27
|
217 |
+
27,27
|
218 |
+
18,18
|
219 |
+
0,0
|
220 |
+
15,15
|
221 |
+
21,0
|
222 |
+
3,3
|
223 |
+
5,27
|
224 |
+
27,0
|
225 |
+
10,24
|
226 |
+
27,4
|
227 |
+
27,27
|
228 |
+
11,2
|
229 |
+
27,27
|
230 |
+
3,27
|
231 |
+
27,27
|
232 |
+
4,4
|
233 |
+
3,3
|
234 |
+
27,27
|
235 |
+
27,27
|
236 |
+
0,0
|
237 |
+
27,27
|
238 |
+
27,26
|
239 |
+
27,27
|
240 |
+
27,27
|
241 |
+
27,27
|
242 |
+
27,27
|
243 |
+
12,12
|
244 |
+
18,18
|
245 |
+
27,27
|
246 |
+
3,27
|
247 |
+
27,27
|
248 |
+
11,2
|
249 |
+
0,0
|
250 |
+
27,27
|
251 |
+
25,27
|
252 |
+
14,14
|
253 |
+
27,27
|
254 |
+
9,10
|
255 |
+
6,6
|
256 |
+
27,8
|
257 |
+
25,25
|
258 |
+
2,3
|
259 |
+
27,4
|
260 |
+
27,27
|
261 |
+
2,3
|
262 |
+
10,10
|
263 |
+
7,7
|
264 |
+
27,27
|
265 |
+
14,14
|
266 |
+
8,8
|
267 |
+
22,27
|
268 |
+
9,9
|
269 |
+
11,11
|
270 |
+
15,15
|
271 |
+
4,4
|
272 |
+
15,15
|
273 |
+
11,9
|
274 |
+
24,24
|
275 |
+
1,1
|
276 |
+
8,14
|
277 |
+
27,27
|
278 |
+
27,27
|
279 |
+
27,27
|
280 |
+
0,0
|
281 |
+
14,25
|
282 |
+
1,1
|
283 |
+
27,27
|
284 |
+
11,11
|
285 |
+
5,27
|
286 |
+
27,27
|
287 |
+
0,17
|
288 |
+
0,0
|
289 |
+
11,2
|
290 |
+
27,27
|
291 |
+
27,27
|
292 |
+
7,7
|
293 |
+
26,7
|
294 |
+
27,27
|
295 |
+
20,26
|
296 |
+
15,15
|
297 |
+
6,6
|
298 |
+
27,27
|
299 |
+
5,27
|
300 |
+
27,27
|
301 |
+
27,27
|
302 |
+
7,7
|
303 |
+
6,18
|
304 |
+
27,27
|
305 |
+
27,5
|
306 |
+
9,27
|
307 |
+
27,11
|
308 |
+
26,27
|
309 |
+
7,12
|
310 |
+
22,27
|
311 |
+
7,7
|
312 |
+
18,18
|
313 |
+
27,7
|
314 |
+
27,27
|
315 |
+
27,27
|
316 |
+
0,0
|
317 |
+
3,7
|
318 |
+
5,5
|
319 |
+
27,27
|
320 |
+
27,27
|
321 |
+
11,11
|
322 |
+
15,15
|
323 |
+
0,0
|
324 |
+
27,27
|
325 |
+
27,27
|
326 |
+
10,10
|
327 |
+
0,4
|
328 |
+
1,1
|
329 |
+
10,10
|
330 |
+
26,26
|
331 |
+
15,15
|
332 |
+
27,27
|
333 |
+
0,0
|
334 |
+
2,11
|
335 |
+
27,2
|
336 |
+
27,27
|
337 |
+
8,20
|
338 |
+
14,14
|
339 |
+
8,18
|
340 |
+
0,0
|
341 |
+
4,18
|
342 |
+
15,15
|
343 |
+
8,17
|
344 |
+
1,0
|
345 |
+
15,15
|
346 |
+
10,9
|
347 |
+
27,27
|
348 |
+
2,2
|
349 |
+
27,2
|
350 |
+
27,7
|
351 |
+
1,1
|
352 |
+
1,1
|
353 |
+
27,27
|
354 |
+
13,27
|
355 |
+
25,26
|
356 |
+
0,0
|
357 |
+
27,27
|
358 |
+
3,27
|
359 |
+
6,7
|
360 |
+
27,27
|
361 |
+
27,27
|
362 |
+
5,27
|
363 |
+
15,15
|
364 |
+
5,20
|
365 |
+
3,27
|
366 |
+
8,8
|
367 |
+
13,15
|
368 |
+
27,27
|
369 |
+
7,27
|
370 |
+
10,10
|
371 |
+
9,2
|
372 |
+
5,27
|
373 |
+
2,2
|
374 |
+
27,27
|
375 |
+
2,27
|
376 |
+
1,1
|
377 |
+
27,10
|
378 |
+
26,3
|
379 |
+
27,26
|
380 |
+
25,26
|
381 |
+
27,27
|
382 |
+
15,15
|
383 |
+
10,27
|
384 |
+
27,27
|
385 |
+
2,2
|
386 |
+
0,0
|
387 |
+
1,1
|
388 |
+
1,1
|
389 |
+
25,25
|
390 |
+
3,7
|
391 |
+
27,27
|
392 |
+
17,17
|
393 |
+
3,2
|
394 |
+
27,0
|
395 |
+
27,2
|
396 |
+
13,13
|
397 |
+
10,27
|
398 |
+
15,17
|
399 |
+
27,27
|
400 |
+
27,27
|
401 |
+
4,27
|
402 |
+
7,17
|
403 |
+
4,10
|
404 |
+
4,27
|
405 |
+
2,3
|
406 |
+
4,27
|
407 |
+
27,7
|
408 |
+
0,27
|
409 |
+
17,27
|
410 |
+
3,27
|
411 |
+
27,27
|
412 |
+
10,10
|
413 |
+
11,11
|
414 |
+
13,0
|
415 |
+
5,18
|
416 |
+
27,27
|
417 |
+
27,27
|
418 |
+
27,8
|
419 |
+
4,27
|
420 |
+
6,7
|
421 |
+
4,2
|
422 |
+
24,24
|
423 |
+
20,20
|
424 |
+
6,6
|
425 |
+
3,27
|
426 |
+
27,27
|
427 |
+
13,13
|
428 |
+
27,27
|
429 |
+
0,0
|
430 |
+
27,27
|
431 |
+
27,27
|
432 |
+
0,0
|
433 |
+
27,27
|
434 |
+
24,24
|
435 |
+
27,27
|
436 |
+
0,0
|
437 |
+
9,25
|
438 |
+
10,27
|
439 |
+
27,27
|
440 |
+
24,24
|
441 |
+
27,27
|
442 |
+
27,27
|
443 |
+
10,11
|
444 |
+
8,27
|
445 |
+
3,10
|
446 |
+
0,0
|
447 |
+
7,6
|
448 |
+
12,12
|
449 |
+
4,20
|
450 |
+
4,6
|
451 |
+
22,27
|
452 |
+
26,26
|
453 |
+
8,25
|
454 |
+
20,20
|
455 |
+
15,15
|
456 |
+
8,8
|
457 |
+
27,27
|
458 |
+
4,4
|
459 |
+
20,20
|
460 |
+
27,27
|
461 |
+
18,7
|
462 |
+
27,7
|
463 |
+
4,7
|
464 |
+
27,27
|
465 |
+
3,3
|
466 |
+
2,3
|
467 |
+
18,18
|
468 |
+
7,7
|
469 |
+
10,27
|
470 |
+
1,1
|
471 |
+
2,2
|
472 |
+
4,27
|
473 |
+
15,15
|
474 |
+
5,27
|
475 |
+
0,1
|
476 |
+
27,27
|
477 |
+
7,7
|
478 |
+
27,27
|
479 |
+
15,15
|
480 |
+
15,15
|
481 |
+
7,26
|
482 |
+
0,18
|
483 |
+
10,27
|
484 |
+
10,6
|
485 |
+
17,1
|
486 |
+
3,3
|
487 |
+
27,27
|
488 |
+
27,27
|
489 |
+
27,27
|
490 |
+
27,8
|
491 |
+
10,10
|
492 |
+
7,27
|
493 |
+
27,27
|
494 |
+
18,0
|
495 |
+
27,27
|
496 |
+
2,2
|
497 |
+
27,27
|
498 |
+
22,27
|
499 |
+
7,7
|
500 |
+
27,27
|
501 |
+
4,4
|
502 |
+
18,18
|
503 |
+
5,15
|
504 |
+
9,9
|
505 |
+
3,14
|
506 |
+
2,2
|
507 |
+
2,2
|
508 |
+
27,27
|
509 |
+
14,14
|
510 |
+
6,15
|
511 |
+
10,7
|
512 |
+
27,27
|
513 |
+
20,27
|
514 |
+
10,10
|
515 |
+
27,27
|
516 |
+
27,27
|
517 |
+
0,20
|
518 |
+
6,7
|
519 |
+
27,27
|
520 |
+
27,22
|
521 |
+
27,27
|
522 |
+
15,15
|
523 |
+
27,27
|
524 |
+
27,27
|
525 |
+
15,15
|
526 |
+
3,27
|
527 |
+
27,27
|
528 |
+
0,0
|
529 |
+
2,2
|
530 |
+
18,18
|
531 |
+
27,27
|
532 |
+
27,27
|
533 |
+
17,0
|
534 |
+
25,25
|
535 |
+
7,7
|
536 |
+
5,5
|
537 |
+
27,27
|
538 |
+
0,0
|
539 |
+
4,27
|
540 |
+
2,2
|
541 |
+
3,27
|
542 |
+
27,27
|
543 |
+
2,27
|
544 |
+
27,27
|
545 |
+
8,27
|
546 |
+
20,27
|
547 |
+
0,0
|
548 |
+
0,15
|
549 |
+
17,14
|
550 |
+
22,27
|
551 |
+
0,0
|
552 |
+
25,26
|
553 |
+
11,3
|
554 |
+
1,0
|
555 |
+
27,27
|
556 |
+
10,2
|
557 |
+
7,7
|
558 |
+
27,4
|
559 |
+
4,18
|
560 |
+
15,15
|
561 |
+
5,8
|
562 |
+
9,14
|
563 |
+
15,15
|
564 |
+
3,7
|
565 |
+
25,25
|
566 |
+
15,15
|
567 |
+
15,15
|
568 |
+
10,11
|
569 |
+
27,7
|
570 |
+
10,10
|
571 |
+
11,11
|
572 |
+
27,27
|
573 |
+
2,2
|
574 |
+
25,27
|
575 |
+
27,27
|
576 |
+
22,27
|
577 |
+
2,2
|
578 |
+
4,0
|
579 |
+
10,27
|
580 |
+
0,0
|
581 |
+
1,1
|
582 |
+
10,27
|
583 |
+
20,20
|
584 |
+
6,6
|
585 |
+
18,18
|
586 |
+
0,27
|
587 |
+
4,17
|
588 |
+
3,27
|
589 |
+
11,11
|
590 |
+
4,27
|
591 |
+
18,18
|
592 |
+
27,27
|
593 |
+
27,27
|
594 |
+
27,27
|
595 |
+
1,0
|
596 |
+
27,27
|
597 |
+
3,27
|
598 |
+
20,20
|
599 |
+
3,27
|
600 |
+
27,27
|
601 |
+
15,15
|
602 |
+
0,27
|
603 |
+
27,27
|
604 |
+
24,25
|
605 |
+
0,0
|
606 |
+
15,15
|
607 |
+
2,27
|
608 |
+
27,27
|
609 |
+
3,2
|
610 |
+
7,7
|
611 |
+
27,27
|
612 |
+
27,14
|
613 |
+
27,27
|
614 |
+
15,15
|
615 |
+
15,15
|
616 |
+
27,27
|
617 |
+
15,15
|
618 |
+
27,27
|
619 |
+
12,12
|
620 |
+
15,15
|
621 |
+
20,27
|
622 |
+
6,6
|
623 |
+
13,13
|
624 |
+
9,27
|
625 |
+
10,10
|
626 |
+
27,27
|
627 |
+
0,0
|
628 |
+
2,27
|
629 |
+
0,0
|
630 |
+
0,0
|
631 |
+
10,10
|
632 |
+
20,27
|
633 |
+
11,2
|
634 |
+
14,14
|
635 |
+
0,0
|
636 |
+
3,2
|
637 |
+
4,4
|
638 |
+
0,0
|
639 |
+
6,9
|
640 |
+
9,3
|
641 |
+
25,27
|
642 |
+
15,20
|
643 |
+
14,14
|
644 |
+
10,10
|
645 |
+
27,3
|
646 |
+
27,0
|
647 |
+
27,27
|
648 |
+
7,7
|
649 |
+
27,27
|
650 |
+
20,20
|
651 |
+
13,13
|
652 |
+
27,27
|
653 |
+
27,4
|
654 |
+
0,27
|
655 |
+
10,10
|
656 |
+
6,27
|
657 |
+
27,27
|
658 |
+
25,14
|
659 |
+
4,4
|
660 |
+
14,14
|
661 |
+
27,27
|
662 |
+
18,18
|
663 |
+
25,3
|
664 |
+
9,9
|
665 |
+
3,27
|
666 |
+
27,27
|
667 |
+
27,27
|
668 |
+
27,27
|
669 |
+
27,27
|
670 |
+
15,15
|
671 |
+
2,2
|
672 |
+
22,1
|
673 |
+
0,0
|
674 |
+
2,11
|
675 |
+
3,27
|
676 |
+
18,18
|
677 |
+
0,0
|
678 |
+
7,26
|
679 |
+
18,18
|
680 |
+
3,27
|
681 |
+
10,10
|
682 |
+
4,27
|
683 |
+
4,4
|
684 |
+
0,1
|
685 |
+
17,17
|
686 |
+
27,27
|
687 |
+
3,3
|
688 |
+
25,5
|
689 |
+
27,24
|
690 |
+
15,15
|
691 |
+
18,18
|
692 |
+
5,15
|
693 |
+
0,0
|
694 |
+
27,27
|
695 |
+
3,27
|
696 |
+
15,15
|
697 |
+
4,4
|
698 |
+
27,18
|
699 |
+
7,7
|
700 |
+
11,11
|
701 |
+
0,8
|
702 |
+
0,27
|
703 |
+
15,15
|
704 |
+
22,27
|
705 |
+
10,10
|
706 |
+
11,27
|
707 |
+
27,27
|
708 |
+
27,7
|
709 |
+
27,0
|
710 |
+
23,25
|
711 |
+
22,27
|
712 |
+
2,2
|
713 |
+
27,3
|
714 |
+
27,27
|
715 |
+
27,27
|
716 |
+
22,26
|
717 |
+
14,14
|
718 |
+
18,18
|
719 |
+
7,14
|
720 |
+
0,0
|
721 |
+
0,0
|
722 |
+
27,27
|
723 |
+
7,7
|
724 |
+
4,4
|
725 |
+
17,17
|
726 |
+
7,7
|
727 |
+
27,27
|
728 |
+
0,27
|
729 |
+
27,27
|
730 |
+
27,27
|
731 |
+
0,0
|
732 |
+
1,1
|
733 |
+
27,3
|
734 |
+
15,15
|
735 |
+
7,6
|
736 |
+
27,7
|
737 |
+
27,27
|
738 |
+
25,24
|
739 |
+
0,0
|
740 |
+
1,1
|
741 |
+
27,3
|
742 |
+
27,0
|
743 |
+
27,18
|
744 |
+
1,1
|
745 |
+
27,27
|
746 |
+
17,17
|
747 |
+
0,0
|
748 |
+
27,27
|
749 |
+
27,6
|
750 |
+
0,0
|
751 |
+
27,27
|
752 |
+
27,27
|
753 |
+
2,15
|
754 |
+
7,7
|
755 |
+
15,0
|
756 |
+
3,3
|
757 |
+
17,1
|
758 |
+
0,27
|
759 |
+
27,27
|
760 |
+
27,4
|
761 |
+
17,1
|
762 |
+
27,27
|
763 |
+
27,27
|
764 |
+
27,27
|
765 |
+
27,0
|
766 |
+
15,0
|
767 |
+
19,25
|
768 |
+
0,0
|
769 |
+
9,6
|
770 |
+
27,27
|
771 |
+
9,9
|
772 |
+
4,4
|
773 |
+
27,27
|
774 |
+
16,27
|
775 |
+
27,3
|
776 |
+
27,0
|
777 |
+
15,0
|
778 |
+
0,0
|
779 |
+
27,27
|
780 |
+
27,27
|
781 |
+
2,2
|
782 |
+
27,27
|
783 |
+
27,2
|
784 |
+
20,20
|
785 |
+
17,20
|
786 |
+
17,17
|
787 |
+
11,3
|
788 |
+
27,27
|
789 |
+
25,8
|
790 |
+
20,20
|
791 |
+
15,15
|
792 |
+
0,0
|
793 |
+
13,0
|
794 |
+
27,9
|
795 |
+
7,27
|
796 |
+
26,26
|
797 |
+
27,1
|
798 |
+
25,27
|
799 |
+
27,2
|
800 |
+
22,27
|
801 |
+
10,10
|
802 |
+
3,27
|
803 |
+
2,2
|
804 |
+
15,15
|
805 |
+
4,27
|
806 |
+
5,27
|
807 |
+
27,27
|
808 |
+
27,1
|
809 |
+
3,3
|
810 |
+
3,27
|
811 |
+
15,15
|
812 |
+
10,10
|
813 |
+
27,27
|
814 |
+
27,27
|
815 |
+
27,27
|
816 |
+
8,27
|
817 |
+
0,27
|
818 |
+
5,5
|
819 |
+
8,8
|
820 |
+
1,1
|
821 |
+
27,27
|
822 |
+
17,17
|
823 |
+
5,5
|
824 |
+
3,27
|
825 |
+
12,27
|
826 |
+
11,1
|
827 |
+
23,0
|
828 |
+
10,10
|
829 |
+
27,27
|
830 |
+
27,27
|
831 |
+
6,6
|
832 |
+
27,27
|
833 |
+
7,7
|
834 |
+
0,0
|
835 |
+
0,0
|
836 |
+
1,1
|
837 |
+
14,14
|
838 |
+
17,5
|
839 |
+
1,1
|
840 |
+
8,8
|
841 |
+
24,24
|
842 |
+
22,27
|
843 |
+
0,15
|
844 |
+
26,26
|
845 |
+
11,11
|
846 |
+
0,27
|
847 |
+
4,27
|
848 |
+
5,5
|
849 |
+
0,0
|
850 |
+
27,27
|
851 |
+
1,1
|
852 |
+
15,7
|
853 |
+
5,14
|
854 |
+
15,15
|
855 |
+
11,1
|
856 |
+
27,27
|
857 |
+
2,27
|
858 |
+
23,4
|
859 |
+
15,15
|
860 |
+
15,15
|
861 |
+
17,25
|
862 |
+
27,20
|
863 |
+
3,27
|
864 |
+
27,27
|
865 |
+
27,27
|
866 |
+
23,27
|
867 |
+
15,15
|
868 |
+
27,0
|
869 |
+
27,27
|
870 |
+
27,25
|
871 |
+
20,8
|
872 |
+
15,15
|
873 |
+
0,13
|
874 |
+
27,27
|
875 |
+
27,24
|
876 |
+
27,27
|
877 |
+
27,27
|
878 |
+
0,0
|
879 |
+
15,15
|
880 |
+
25,25
|
881 |
+
27,27
|
882 |
+
4,5
|
883 |
+
15,15
|
884 |
+
15,15
|
885 |
+
27,26
|
886 |
+
7,6
|
887 |
+
17,17
|
888 |
+
1,1
|
889 |
+
13,27
|
890 |
+
6,6
|
891 |
+
15,15
|
892 |
+
3,3
|
893 |
+
27,26
|
894 |
+
22,27
|
895 |
+
27,27
|
896 |
+
27,27
|
897 |
+
27,27
|
898 |
+
27,27
|
899 |
+
10,27
|
900 |
+
20,20
|
901 |
+
2,27
|
902 |
+
27,27
|
903 |
+
27,1
|
904 |
+
0,0
|
905 |
+
6,7
|
906 |
+
14,27
|
907 |
+
27,27
|
908 |
+
1,0
|
909 |
+
4,4
|
910 |
+
4,27
|
911 |
+
15,15
|
912 |
+
27,10
|
913 |
+
12,9
|
914 |
+
10,27
|
915 |
+
7,26
|
916 |
+
1,1
|
917 |
+
26,26
|
918 |
+
18,18
|
919 |
+
7,7
|
920 |
+
25,24
|
921 |
+
27,27
|
922 |
+
18,18
|
923 |
+
9,27
|
924 |
+
1,0
|
925 |
+
15,15
|
926 |
+
27,27
|
927 |
+
2,27
|
928 |
+
27,27
|
929 |
+
27,7
|
930 |
+
4,0
|
931 |
+
20,20
|
932 |
+
27,13
|
933 |
+
27,27
|
934 |
+
0,0
|
935 |
+
9,27
|
936 |
+
15,15
|
937 |
+
27,10
|
938 |
+
10,9
|
939 |
+
22,26
|
940 |
+
25,27
|
941 |
+
15,15
|
942 |
+
19,14
|
943 |
+
4,4
|
944 |
+
27,27
|
945 |
+
5,17
|
946 |
+
2,2
|
947 |
+
5,18
|
948 |
+
8,8
|
949 |
+
27,27
|
950 |
+
15,15
|
951 |
+
0,0
|
952 |
+
27,27
|
953 |
+
11,9
|
954 |
+
2,3
|
955 |
+
25,24
|
956 |
+
3,27
|
957 |
+
27,27
|
958 |
+
27,27
|
959 |
+
0,0
|
960 |
+
4,4
|
961 |
+
13,17
|
962 |
+
3,27
|
963 |
+
7,7
|
964 |
+
4,4
|
965 |
+
1,1
|
966 |
+
5,5
|
967 |
+
1,1
|
968 |
+
3,27
|
969 |
+
4,7
|
970 |
+
25,27
|
971 |
+
27,27
|
972 |
+
27,25
|
973 |
+
5,5
|
974 |
+
12,12
|
975 |
+
1,1
|
976 |
+
4,4
|
977 |
+
0,0
|
978 |
+
1,1
|
979 |
+
0,27
|
980 |
+
27,27
|
981 |
+
27,27
|
982 |
+
8,27
|
983 |
+
27,27
|
984 |
+
13,13
|
985 |
+
2,1
|
986 |
+
27,27
|
987 |
+
1,10
|
988 |
+
27,27
|
989 |
+
7,7
|
990 |
+
20,20
|
991 |
+
27,4
|
992 |
+
27,4
|
993 |
+
20,20
|
994 |
+
14,14
|
995 |
+
3,27
|
996 |
+
2,27
|
997 |
+
10,10
|
998 |
+
15,15
|
999 |
+
27,7
|
1000 |
+
0,0
|
1001 |
+
0,0
|
1002 |
+
18,18
|
1003 |
+
27,10
|
1004 |
+
4,27
|
1005 |
+
4,0
|
1006 |
+
7,27
|
1007 |
+
18,18
|
1008 |
+
14,3
|
1009 |
+
1,1
|
1010 |
+
4,27
|
1011 |
+
18,18
|
1012 |
+
15,15
|
1013 |
+
15,15
|
1014 |
+
27,27
|
1015 |
+
11,3
|
1016 |
+
4,27
|
1017 |
+
26,7
|
1018 |
+
27,27
|
1019 |
+
27,27
|
1020 |
+
1,7
|
1021 |
+
15,0
|
1022 |
+
27,27
|
1023 |
+
27,27
|
1024 |
+
15,15
|
1025 |
+
4,4
|
1026 |
+
27,27
|
1027 |
+
27,7
|
1028 |
+
7,7
|
1029 |
+
27,27
|
1030 |
+
27,27
|
1031 |
+
10,27
|
1032 |
+
18,4
|
1033 |
+
7,7
|
1034 |
+
27,27
|
1035 |
+
27,10
|
1036 |
+
2,7
|
1037 |
+
9,20
|
1038 |
+
1,1
|
1039 |
+
20,4
|
1040 |
+
27,27
|
1041 |
+
27,27
|
1042 |
+
27,27
|
1043 |
+
15,15
|
1044 |
+
7,5
|
1045 |
+
0,0
|
1046 |
+
18,18
|
1047 |
+
27,7
|
1048 |
+
24,17
|
1049 |
+
3,10
|
1050 |
+
2,3
|
1051 |
+
0,17
|
1052 |
+
27,15
|
1053 |
+
4,4
|
1054 |
+
3,27
|
1055 |
+
20,27
|
1056 |
+
27,27
|
1057 |
+
27,27
|
1058 |
+
6,7
|
1059 |
+
27,27
|
1060 |
+
3,27
|
1061 |
+
4,27
|
1062 |
+
1,27
|
1063 |
+
0,15
|
1064 |
+
3,27
|
1065 |
+
14,1
|
1066 |
+
10,27
|
1067 |
+
24,24
|
1068 |
+
0,27
|
1069 |
+
27,27
|
1070 |
+
10,10
|
1071 |
+
15,15
|
1072 |
+
3,10
|
1073 |
+
20,20
|
1074 |
+
27,27
|
1075 |
+
0,0
|
1076 |
+
27,6
|
1077 |
+
2,27
|
1078 |
+
27,27
|
1079 |
+
27,27
|
1080 |
+
17,18
|
1081 |
+
6,27
|
1082 |
+
27,27
|
1083 |
+
0,0
|
1084 |
+
18,18
|
1085 |
+
26,6
|
1086 |
+
2,7
|
1087 |
+
27,27
|
1088 |
+
27,27
|
1089 |
+
25,25
|
1090 |
+
3,3
|
1091 |
+
1,1
|
1092 |
+
26,26
|
1093 |
+
27,27
|
1094 |
+
27,27
|
1095 |
+
3,27
|
1096 |
+
0,0
|
1097 |
+
27,27
|
1098 |
+
15,15
|
1099 |
+
17,17
|
1100 |
+
4,4
|
1101 |
+
25,27
|
1102 |
+
27,27
|
1103 |
+
10,6
|
1104 |
+
15,15
|
1105 |
+
27,27
|
1106 |
+
0,17
|
1107 |
+
27,6
|
1108 |
+
11,14
|
1109 |
+
4,0
|
1110 |
+
0,0
|
1111 |
+
18,27
|
1112 |
+
27,27
|
1113 |
+
18,8
|
1114 |
+
5,5
|
1115 |
+
27,27
|
1116 |
+
10,27
|
1117 |
+
27,27
|
1118 |
+
17,17
|
1119 |
+
2,14
|
1120 |
+
0,0
|
1121 |
+
0,0
|
1122 |
+
27,27
|
1123 |
+
17,27
|
1124 |
+
27,27
|
1125 |
+
0,0
|
1126 |
+
3,27
|
1127 |
+
27,27
|
1128 |
+
27,27
|
1129 |
+
7,27
|
1130 |
+
3,3
|
1131 |
+
18,18
|
1132 |
+
13,13
|
1133 |
+
1,1
|
1134 |
+
3,4
|
1135 |
+
0,0
|
1136 |
+
11,27
|
1137 |
+
27,27
|
1138 |
+
1,1
|
1139 |
+
0,0
|
1140 |
+
13,27
|
1141 |
+
26,26
|
1142 |
+
27,27
|
1143 |
+
20,20
|
1144 |
+
27,27
|
1145 |
+
17,18
|
1146 |
+
0,0
|
1147 |
+
5,17
|
1148 |
+
4,27
|
1149 |
+
27,27
|
1150 |
+
26,27
|
1151 |
+
27,27
|
1152 |
+
17,0
|
1153 |
+
0,17
|
1154 |
+
25,27
|
1155 |
+
17,17
|
1156 |
+
6,7
|
1157 |
+
27,27
|
1158 |
+
27,27
|
1159 |
+
27,27
|
1160 |
+
0,0
|
1161 |
+
27,7
|
1162 |
+
15,15
|
1163 |
+
27,27
|
1164 |
+
0,0
|
1165 |
+
15,15
|
1166 |
+
27,27
|
1167 |
+
27,27
|
1168 |
+
27,27
|
1169 |
+
26,26
|
1170 |
+
1,17
|
1171 |
+
4,3
|
1172 |
+
12,27
|
1173 |
+
11,3
|
1174 |
+
27,27
|
1175 |
+
27,27
|
1176 |
+
0,18
|
1177 |
+
15,15
|
1178 |
+
1,1
|
1179 |
+
22,27
|
1180 |
+
22,24
|
1181 |
+
27,27
|
1182 |
+
3,20
|
1183 |
+
1,1
|
1184 |
+
3,27
|
1185 |
+
27,27
|
1186 |
+
4,0
|
1187 |
+
0,18
|
1188 |
+
1,7
|
1189 |
+
2,7
|
1190 |
+
9,14
|
1191 |
+
4,4
|
1192 |
+
1,1
|
1193 |
+
26,26
|
1194 |
+
27,27
|
1195 |
+
27,27
|
1196 |
+
4,27
|
1197 |
+
2,2
|
1198 |
+
27,0
|
1199 |
+
3,9
|
1200 |
+
1,1
|
1201 |
+
0,0
|
1202 |
+
0,0
|
1203 |
+
0,0
|
1204 |
+
0,0
|
1205 |
+
6,6
|
1206 |
+
4,27
|
1207 |
+
0,0
|
1208 |
+
7,7
|
1209 |
+
27,27
|
1210 |
+
27,27
|
1211 |
+
1,27
|
1212 |
+
22,27
|
1213 |
+
27,27
|
1214 |
+
10,27
|
1215 |
+
7,7
|
1216 |
+
27,27
|
1217 |
+
27,4
|
1218 |
+
27,0
|
1219 |
+
7,7
|
1220 |
+
27,3
|
1221 |
+
15,15
|
1222 |
+
18,18
|
1223 |
+
27,27
|
1224 |
+
19,27
|
1225 |
+
26,26
|
1226 |
+
27,27
|
1227 |
+
27,27
|
1228 |
+
11,11
|
1229 |
+
27,27
|
1230 |
+
24,1
|
1231 |
+
27,27
|
1232 |
+
10,27
|
1233 |
+
27,27
|
1234 |
+
27,27
|
1235 |
+
25,25
|
1236 |
+
18,10
|
1237 |
+
4,27
|
1238 |
+
20,8
|
1239 |
+
4,0
|
1240 |
+
27,27
|
1241 |
+
5,25
|
1242 |
+
27,0
|
1243 |
+
0,0
|
1244 |
+
27,27
|
1245 |
+
27,22
|
1246 |
+
22,22
|
1247 |
+
27,27
|
1248 |
+
7,7
|
1249 |
+
7,18
|
1250 |
+
10,27
|
1251 |
+
17,17
|
1252 |
+
5,5
|
1253 |
+
9,27
|
1254 |
+
27,10
|
1255 |
+
7,7
|
1256 |
+
27,6
|
1257 |
+
27,0
|
1258 |
+
2,26
|
1259 |
+
27,27
|
1260 |
+
0,0
|
1261 |
+
10,2
|
1262 |
+
1,1
|
1263 |
+
27,7
|
1264 |
+
27,27
|
1265 |
+
27,22
|
1266 |
+
0,0
|
1267 |
+
0,0
|
1268 |
+
18,27
|
1269 |
+
3,27
|
1270 |
+
11,26
|
1271 |
+
2,27
|
1272 |
+
25,11
|
1273 |
+
27,27
|
1274 |
+
27,27
|
1275 |
+
22,27
|
1276 |
+
3,3
|
1277 |
+
8,8
|
1278 |
+
7,6
|
1279 |
+
15,15
|
1280 |
+
6,7
|
1281 |
+
10,10
|
1282 |
+
0,0
|
1283 |
+
0,0
|
1284 |
+
0,18
|
1285 |
+
7,7
|
1286 |
+
17,27
|
1287 |
+
0,0
|
1288 |
+
1,1
|
1289 |
+
27,7
|
1290 |
+
8,27
|
1291 |
+
27,27
|
1292 |
+
20,20
|
1293 |
+
4,4
|
1294 |
+
11,11
|
1295 |
+
3,27
|
1296 |
+
19,9
|
1297 |
+
5,5
|
1298 |
+
27,27
|
1299 |
+
27,6
|
1300 |
+
4,27
|
1301 |
+
27,7
|
1302 |
+
27,7
|
1303 |
+
0,0
|
1304 |
+
7,27
|
1305 |
+
5,5
|
1306 |
+
27,27
|
1307 |
+
27,27
|
1308 |
+
4,1
|
1309 |
+
13,26
|
1310 |
+
3,11
|
1311 |
+
6,6
|
1312 |
+
8,18
|
1313 |
+
27,27
|
1314 |
+
27,27
|
1315 |
+
27,27
|
1316 |
+
14,14
|
1317 |
+
27,27
|
1318 |
+
6,3
|
1319 |
+
27,27
|
1320 |
+
26,27
|
1321 |
+
0,6
|
1322 |
+
3,27
|
1323 |
+
3,3
|
1324 |
+
0,0
|
1325 |
+
27,26
|
1326 |
+
5,5
|
1327 |
+
0,0
|
1328 |
+
27,25
|
1329 |
+
14,3
|
1330 |
+
4,10
|
1331 |
+
13,13
|
1332 |
+
4,4
|
1333 |
+
27,27
|
1334 |
+
4,4
|
1335 |
+
22,1
|
1336 |
+
27,3
|
1337 |
+
5,5
|
1338 |
+
2,2
|
1339 |
+
27,27
|
1340 |
+
27,27
|
1341 |
+
11,11
|
1342 |
+
15,15
|
1343 |
+
18,27
|
1344 |
+
0,0
|
1345 |
+
27,7
|
1346 |
+
4,27
|
1347 |
+
15,15
|
1348 |
+
27,27
|
1349 |
+
25,26
|
1350 |
+
3,3
|
1351 |
+
3,27
|
1352 |
+
18,18
|
1353 |
+
27,27
|
1354 |
+
3,27
|
1355 |
+
15,15
|
1356 |
+
20,20
|
1357 |
+
27,27
|
1358 |
+
10,6
|
1359 |
+
27,27
|
1360 |
+
12,11
|
1361 |
+
10,4
|
1362 |
+
13,13
|
1363 |
+
5,15
|
1364 |
+
3,10
|
1365 |
+
2,3
|
1366 |
+
0,0
|
1367 |
+
17,17
|
1368 |
+
3,2
|
1369 |
+
7,27
|
1370 |
+
25,25
|
1371 |
+
0,0
|
1372 |
+
27,27
|
1373 |
+
15,15
|
1374 |
+
9,27
|
1375 |
+
10,10
|
1376 |
+
11,11
|
1377 |
+
27,7
|
1378 |
+
27,27
|
1379 |
+
4,27
|
1380 |
+
27,27
|
1381 |
+
24,24
|
1382 |
+
6,7
|
1383 |
+
9,10
|
1384 |
+
7,1
|
1385 |
+
27,27
|
1386 |
+
27,7
|
1387 |
+
0,0
|
1388 |
+
6,27
|
1389 |
+
18,18
|
1390 |
+
27,27
|
1391 |
+
25,25
|
1392 |
+
27,2
|
1393 |
+
7,7
|
1394 |
+
7,27
|
1395 |
+
27,27
|
1396 |
+
27,27
|
1397 |
+
15,15
|
1398 |
+
5,27
|
1399 |
+
1,1
|
1400 |
+
27,6
|
1401 |
+
13,13
|
1402 |
+
7,20
|
1403 |
+
6,7
|
1404 |
+
15,15
|
1405 |
+
27,27
|
1406 |
+
27,7
|
1407 |
+
26,27
|
1408 |
+
1,1
|
1409 |
+
4,27
|
1410 |
+
13,7
|
1411 |
+
22,27
|
1412 |
+
27,27
|
1413 |
+
10,1
|
1414 |
+
18,18
|
1415 |
+
10,10
|
1416 |
+
26,0
|
1417 |
+
13,13
|
1418 |
+
4,27
|
1419 |
+
3,0
|
1420 |
+
27,9
|
1421 |
+
15,0
|
1422 |
+
8,8
|
1423 |
+
27,12
|
1424 |
+
3,2
|
1425 |
+
18,18
|
1426 |
+
0,0
|
1427 |
+
8,8
|
1428 |
+
1,26
|
1429 |
+
27,27
|
1430 |
+
10,27
|
1431 |
+
0,0
|
1432 |
+
0,0
|
1433 |
+
2,2
|
1434 |
+
4,27
|
1435 |
+
10,11
|
1436 |
+
7,7
|
1437 |
+
27,27
|
1438 |
+
0,0
|
1439 |
+
25,25
|
1440 |
+
26,2
|
1441 |
+
9,9
|
1442 |
+
27,7
|
1443 |
+
7,26
|
1444 |
+
27,27
|
1445 |
+
20,20
|
1446 |
+
27,27
|
1447 |
+
0,17
|
1448 |
+
3,27
|
1449 |
+
2,2
|
1450 |
+
27,27
|
1451 |
+
0,27
|
1452 |
+
7,7
|
1453 |
+
12,12
|
1454 |
+
5,5
|
1455 |
+
3,7
|
1456 |
+
2,2
|
1457 |
+
17,17
|
1458 |
+
15,0
|
1459 |
+
4,27
|
1460 |
+
0,0
|
1461 |
+
27,4
|
1462 |
+
27,27
|
1463 |
+
3,3
|
1464 |
+
9,9
|
1465 |
+
27,4
|
1466 |
+
27,27
|
1467 |
+
15,0
|
1468 |
+
7,7
|
1469 |
+
27,13
|
1470 |
+
18,18
|
1471 |
+
14,14
|
1472 |
+
27,7
|
1473 |
+
1,1
|
1474 |
+
18,18
|
1475 |
+
7,7
|
1476 |
+
10,10
|
1477 |
+
0,0
|
1478 |
+
4,0
|
1479 |
+
15,15
|
1480 |
+
15,15
|
1481 |
+
6,6
|
1482 |
+
4,4
|
1483 |
+
5,27
|
1484 |
+
27,0
|
1485 |
+
1,1
|
1486 |
+
27,27
|
1487 |
+
3,27
|
1488 |
+
27,10
|
1489 |
+
0,0
|
1490 |
+
17,17
|
1491 |
+
15,15
|
1492 |
+
0,5
|
1493 |
+
0,0
|
1494 |
+
27,3
|
1495 |
+
7,7
|
1496 |
+
4,4
|
1497 |
+
9,10
|
1498 |
+
10,24
|
1499 |
+
17,0
|
1500 |
+
11,11
|
1501 |
+
24,25
|
1502 |
+
2,2
|
1503 |
+
27,2
|
1504 |
+
27,27
|
1505 |
+
2,2
|
1506 |
+
10,27
|
1507 |
+
9,9
|
1508 |
+
2,3
|
1509 |
+
1,1
|
1510 |
+
19,27
|
1511 |
+
10,27
|
1512 |
+
10,18
|
1513 |
+
0,0
|
1514 |
+
10,10
|
1515 |
+
13,13
|
1516 |
+
25,4
|
1517 |
+
17,17
|
1518 |
+
1,1
|
1519 |
+
18,18
|
1520 |
+
22,27
|
1521 |
+
10,10
|
1522 |
+
15,1
|
1523 |
+
13,27
|
1524 |
+
14,27
|
1525 |
+
27,27
|
1526 |
+
27,27
|
1527 |
+
3,27
|
1528 |
+
26,26
|
1529 |
+
27,27
|
1530 |
+
3,5
|
1531 |
+
7,7
|
1532 |
+
0,0
|
1533 |
+
18,18
|
1534 |
+
3,27
|
1535 |
+
27,27
|
1536 |
+
27,27
|
1537 |
+
15,15
|
1538 |
+
9,2
|
1539 |
+
22,26
|
1540 |
+
18,18
|
1541 |
+
0,0
|
1542 |
+
0,0
|
1543 |
+
20,5
|
1544 |
+
22,27
|
1545 |
+
10,10
|
1546 |
+
27,27
|
1547 |
+
3,27
|
1548 |
+
19,14
|
1549 |
+
27,27
|
1550 |
+
22,27
|
1551 |
+
27,27
|
1552 |
+
22,27
|
1553 |
+
27,27
|
1554 |
+
5,5
|
1555 |
+
3,0
|
1556 |
+
27,27
|
1557 |
+
7,27
|
1558 |
+
18,18
|
1559 |
+
27,27
|
1560 |
+
15,15
|
1561 |
+
18,18
|
1562 |
+
6,7
|
1563 |
+
0,0
|
1564 |
+
17,17
|
1565 |
+
0,27
|
1566 |
+
0,0
|
1567 |
+
27,27
|
1568 |
+
27,13
|
1569 |
+
3,2
|
1570 |
+
4,27
|
1571 |
+
0,0
|
1572 |
+
18,18
|
1573 |
+
27,27
|
1574 |
+
1,1
|
1575 |
+
27,27
|
1576 |
+
15,15
|
1577 |
+
6,6
|
1578 |
+
27,27
|
1579 |
+
22,27
|
1580 |
+
18,18
|
1581 |
+
7,27
|
1582 |
+
15,15
|
1583 |
+
27,27
|
1584 |
+
10,10
|
1585 |
+
2,3
|
1586 |
+
27,3
|
1587 |
+
18,18
|
1588 |
+
0,17
|
1589 |
+
9,25
|
1590 |
+
0,26
|
1591 |
+
27,3
|
1592 |
+
15,15
|
1593 |
+
1,1
|
1594 |
+
27,27
|
1595 |
+
27,27
|
1596 |
+
10,15
|
1597 |
+
27,6
|
1598 |
+
27,2
|
1599 |
+
1,1
|
1600 |
+
25,0
|
1601 |
+
15,15
|
1602 |
+
15,15
|
1603 |
+
0,0
|
1604 |
+
4,4
|
1605 |
+
11,3
|
1606 |
+
27,27
|
1607 |
+
0,0
|
1608 |
+
27,27
|
1609 |
+
27,7
|
1610 |
+
10,10
|
1611 |
+
25,25
|
1612 |
+
4,27
|
1613 |
+
7,27
|
1614 |
+
2,27
|
1615 |
+
3,7
|
1616 |
+
0,0
|
1617 |
+
15,15
|
1618 |
+
27,4
|
1619 |
+
27,1
|
1620 |
+
1,1
|
1621 |
+
15,15
|
1622 |
+
0,5
|
1623 |
+
7,26
|
1624 |
+
18,18
|
1625 |
+
10,27
|
1626 |
+
10,25
|
1627 |
+
1,1
|
1628 |
+
10,27
|
1629 |
+
15,15
|
1630 |
+
13,7
|
1631 |
+
13,27
|
1632 |
+
27,27
|
1633 |
+
4,27
|
1634 |
+
27,27
|
1635 |
+
27,27
|
1636 |
+
0,1
|
1637 |
+
27,11
|
1638 |
+
27,7
|
1639 |
+
4,4
|
1640 |
+
0,0
|
1641 |
+
18,18
|
1642 |
+
9,9
|
1643 |
+
4,18
|
1644 |
+
24,24
|
1645 |
+
2,18
|
1646 |
+
15,15
|
1647 |
+
0,0
|
1648 |
+
26,27
|
1649 |
+
0,27
|
1650 |
+
27,3
|
1651 |
+
27,27
|
1652 |
+
0,0
|
1653 |
+
27,27
|
1654 |
+
10,27
|
1655 |
+
6,6
|
1656 |
+
26,26
|
1657 |
+
7,7
|
1658 |
+
17,17
|
1659 |
+
10,25
|
1660 |
+
27,27
|
1661 |
+
27,27
|
1662 |
+
18,18
|
1663 |
+
1,1
|
1664 |
+
27,27
|
1665 |
+
13,17
|
1666 |
+
27,27
|
1667 |
+
0,18
|
1668 |
+
27,7
|
1669 |
+
13,20
|
1670 |
+
22,4
|
1671 |
+
27,27
|
1672 |
+
27,27
|
1673 |
+
27,1
|
1674 |
+
0,0
|
1675 |
+
11,11
|
1676 |
+
27,25
|
1677 |
+
13,17
|
1678 |
+
1,1
|
1679 |
+
27,14
|
1680 |
+
11,11
|
1681 |
+
0,0
|
1682 |
+
4,4
|
1683 |
+
25,25
|
1684 |
+
8,8
|
1685 |
+
18,18
|
1686 |
+
1,1
|
1687 |
+
7,26
|
1688 |
+
6,27
|
1689 |
+
27,7
|
1690 |
+
18,18
|
1691 |
+
18,18
|
1692 |
+
27,4
|
1693 |
+
22,26
|
1694 |
+
0,26
|
1695 |
+
22,27
|
1696 |
+
18,18
|
1697 |
+
3,0
|
1698 |
+
27,27
|
1699 |
+
0,25
|
1700 |
+
3,27
|
1701 |
+
3,0
|
1702 |
+
11,10
|
1703 |
+
27,1
|
1704 |
+
18,4
|
1705 |
+
27,27
|
1706 |
+
0,0
|
1707 |
+
27,27
|
1708 |
+
4,27
|
1709 |
+
27,13
|
1710 |
+
27,27
|
1711 |
+
27,27
|
1712 |
+
20,5
|
1713 |
+
0,0
|
1714 |
+
27,3
|
1715 |
+
27,27
|
1716 |
+
27,27
|
1717 |
+
3,3
|
1718 |
+
7,27
|
1719 |
+
20,20
|
1720 |
+
3,27
|
1721 |
+
20,0
|
1722 |
+
13,17
|
1723 |
+
27,27
|
1724 |
+
3,27
|
1725 |
+
27,27
|
1726 |
+
4,27
|
1727 |
+
4,27
|
1728 |
+
5,27
|
1729 |
+
0,4
|
1730 |
+
7,7
|
1731 |
+
7,7
|
1732 |
+
0,27
|
1733 |
+
25,12
|
1734 |
+
0,0
|
1735 |
+
27,10
|
1736 |
+
10,10
|
1737 |
+
27,27
|
1738 |
+
24,24
|
1739 |
+
9,9
|
1740 |
+
24,24
|
1741 |
+
4,4
|
1742 |
+
6,10
|
1743 |
+
17,17
|
1744 |
+
0,0
|
1745 |
+
2,2
|
1746 |
+
27,27
|
1747 |
+
27,27
|
1748 |
+
10,10
|
1749 |
+
4,27
|
1750 |
+
3,10
|
1751 |
+
25,25
|
1752 |
+
27,27
|
1753 |
+
0,0
|
1754 |
+
27,27
|
1755 |
+
19,7
|
1756 |
+
27,27
|
1757 |
+
26,3
|
1758 |
+
27,27
|
1759 |
+
18,4
|
1760 |
+
27,27
|
1761 |
+
27,27
|
1762 |
+
3,27
|
1763 |
+
27,27
|
1764 |
+
27,27
|
1765 |
+
1,27
|
1766 |
+
27,27
|
1767 |
+
0,18
|
1768 |
+
2,2
|
1769 |
+
18,18
|
1770 |
+
20,27
|
1771 |
+
26,26
|
1772 |
+
0,0
|
1773 |
+
27,27
|
1774 |
+
3,7
|
1775 |
+
27,27
|
1776 |
+
15,15
|
1777 |
+
10,27
|
1778 |
+
6,6
|
1779 |
+
1,1
|
1780 |
+
21,0
|
1781 |
+
27,5
|
1782 |
+
27,0
|
1783 |
+
25,9
|
1784 |
+
11,14
|
1785 |
+
27,27
|
1786 |
+
27,4
|
1787 |
+
1,1
|
1788 |
+
20,20
|
1789 |
+
0,15
|
1790 |
+
27,27
|
1791 |
+
4,4
|
1792 |
+
27,14
|
1793 |
+
25,27
|
1794 |
+
22,27
|
1795 |
+
0,13
|
1796 |
+
0,0
|
1797 |
+
18,18
|
1798 |
+
27,27
|
1799 |
+
27,27
|
1800 |
+
27,27
|
1801 |
+
9,27
|
1802 |
+
27,10
|
1803 |
+
17,1
|
1804 |
+
0,1
|
1805 |
+
4,3
|
1806 |
+
3,3
|
1807 |
+
17,17
|
1808 |
+
5,5
|
1809 |
+
27,27
|
1810 |
+
27,4
|
1811 |
+
0,0
|
1812 |
+
4,4
|
1813 |
+
27,7
|
1814 |
+
15,4
|
1815 |
+
7,25
|
1816 |
+
1,1
|
1817 |
+
7,6
|
1818 |
+
7,18
|
1819 |
+
1,27
|
1820 |
+
1,1
|
1821 |
+
0,0
|
1822 |
+
1,1
|
1823 |
+
1,1
|
1824 |
+
10,27
|
1825 |
+
0,0
|
1826 |
+
2,2
|
1827 |
+
10,10
|
1828 |
+
10,0
|
1829 |
+
27,9
|
1830 |
+
1,1
|
1831 |
+
27,0
|
1832 |
+
27,27
|
1833 |
+
22,27
|
1834 |
+
7,7
|
1835 |
+
0,0
|
1836 |
+
27,11
|
1837 |
+
26,26
|
1838 |
+
9,6
|
1839 |
+
14,14
|
1840 |
+
18,18
|
1841 |
+
27,7
|
1842 |
+
1,1
|
1843 |
+
27,27
|
1844 |
+
7,27
|
1845 |
+
18,0
|
1846 |
+
27,27
|
1847 |
+
27,27
|
1848 |
+
27,0
|
1849 |
+
20,20
|
1850 |
+
7,27
|
1851 |
+
0,0
|
1852 |
+
27,27
|
1853 |
+
18,0
|
1854 |
+
5,27
|
1855 |
+
18,18
|
1856 |
+
3,24
|
1857 |
+
10,1
|
1858 |
+
6,27
|
1859 |
+
27,4
|
1860 |
+
27,10
|
1861 |
+
20,20
|
1862 |
+
25,25
|
1863 |
+
27,27
|
1864 |
+
27,3
|
1865 |
+
13,13
|
1866 |
+
2,2
|
1867 |
+
26,0
|
1868 |
+
10,11
|
1869 |
+
10,27
|
1870 |
+
25,27
|
1871 |
+
3,27
|
1872 |
+
27,27
|
1873 |
+
3,10
|
1874 |
+
0,0
|
1875 |
+
10,10
|
1876 |
+
13,27
|
1877 |
+
6,6
|
1878 |
+
0,0
|
1879 |
+
1,1
|
1880 |
+
27,27
|
1881 |
+
3,2
|
1882 |
+
27,10
|
1883 |
+
3,2
|
1884 |
+
1,1
|
1885 |
+
17,17
|
1886 |
+
7,27
|
1887 |
+
24,24
|
1888 |
+
15,15
|
1889 |
+
3,3
|
1890 |
+
0,27
|
1891 |
+
20,8
|
1892 |
+
27,7
|
1893 |
+
2,3
|
1894 |
+
27,27
|
1895 |
+
27,10
|
1896 |
+
15,15
|
1897 |
+
9,27
|
1898 |
+
27,27
|
1899 |
+
27,27
|
1900 |
+
15,15
|
1901 |
+
13,27
|
1902 |
+
27,27
|
1903 |
+
20,27
|
1904 |
+
27,27
|
1905 |
+
27,27
|
1906 |
+
15,15
|
1907 |
+
27,27
|
1908 |
+
6,6
|
1909 |
+
27,27
|
1910 |
+
3,27
|
1911 |
+
6,24
|
1912 |
+
22,11
|
1913 |
+
27,27
|
1914 |
+
27,4
|
1915 |
+
7,7
|
1916 |
+
25,10
|
1917 |
+
27,6
|
1918 |
+
27,27
|
1919 |
+
27,27
|
1920 |
+
27,27
|
1921 |
+
0,4
|
1922 |
+
4,4
|
1923 |
+
27,27
|
1924 |
+
10,10
|
1925 |
+
1,8
|
1926 |
+
2,27
|
1927 |
+
3,11
|
1928 |
+
0,20
|
1929 |
+
27,2
|
1930 |
+
5,0
|
1931 |
+
15,0
|
1932 |
+
27,27
|
1933 |
+
1,1
|
1934 |
+
9,27
|
1935 |
+
9,27
|
1936 |
+
15,15
|
1937 |
+
27,27
|
1938 |
+
27,5
|
1939 |
+
0,0
|
1940 |
+
15,0
|
1941 |
+
25,25
|
1942 |
+
0,0
|
1943 |
+
3,1
|
1944 |
+
27,27
|
1945 |
+
20,20
|
1946 |
+
0,4
|
1947 |
+
5,27
|
1948 |
+
10,10
|
1949 |
+
15,15
|
1950 |
+
1,1
|
1951 |
+
18,18
|
1952 |
+
6,7
|
1953 |
+
0,18
|
1954 |
+
1,1
|
1955 |
+
27,27
|
1956 |
+
4,27
|
1957 |
+
15,0
|
1958 |
+
27,27
|
1959 |
+
9,27
|
1960 |
+
1,1
|
1961 |
+
20,20
|
1962 |
+
20,20
|
1963 |
+
15,15
|
1964 |
+
1,1
|
1965 |
+
27,27
|
1966 |
+
6,6
|
1967 |
+
3,3
|
1968 |
+
4,27
|
1969 |
+
27,27
|
1970 |
+
1,1
|
1971 |
+
15,7
|
1972 |
+
10,27
|
1973 |
+
27,27
|
1974 |
+
5,5
|
1975 |
+
27,27
|
1976 |
+
27,1
|
1977 |
+
10,10
|
1978 |
+
22,27
|
1979 |
+
15,17
|
1980 |
+
2,2
|
1981 |
+
1,1
|
1982 |
+
27,6
|
1983 |
+
27,27
|
1984 |
+
5,5
|
1985 |
+
27,27
|
1986 |
+
18,18
|
1987 |
+
27,6
|
1988 |
+
27,27
|
1989 |
+
15,15
|
1990 |
+
20,20
|
1991 |
+
9,2
|
1992 |
+
27,27
|
1993 |
+
0,0
|
1994 |
+
4,27
|
1995 |
+
0,0
|
1996 |
+
27,6
|
1997 |
+
1,1
|
1998 |
+
27,27
|
1999 |
+
0,0
|
2000 |
+
27,27
|
2001 |
+
10,0
|
2002 |
+
27,27
|
2003 |
+
4,4
|
2004 |
+
11,11
|
2005 |
+
17,17
|
2006 |
+
10,10
|
2007 |
+
22,27
|
2008 |
+
15,15
|
2009 |
+
5,27
|
2010 |
+
27,27
|
2011 |
+
27,27
|
2012 |
+
7,27
|
2013 |
+
1,27
|
2014 |
+
0,0
|
2015 |
+
7,7
|
2016 |
+
0,0
|
2017 |
+
11,11
|
2018 |
+
18,18
|
2019 |
+
1,1
|
2020 |
+
0,0
|
2021 |
+
0,0
|
2022 |
+
4,27
|
2023 |
+
3,11
|
2024 |
+
15,15
|
2025 |
+
22,10
|
2026 |
+
15,15
|
2027 |
+
22,6
|
2028 |
+
18,18
|
2029 |
+
27,27
|
2030 |
+
27,27
|
2031 |
+
15,15
|
2032 |
+
4,4
|
2033 |
+
20,20
|
2034 |
+
20,20
|
2035 |
+
4,4
|
2036 |
+
10,27
|
2037 |
+
27,27
|
2038 |
+
17,17
|
2039 |
+
3,3
|
2040 |
+
27,27
|
2041 |
+
1,1
|
2042 |
+
9,18
|
2043 |
+
27,4
|
2044 |
+
27,7
|
2045 |
+
6,6
|
2046 |
+
2,2
|
2047 |
+
11,27
|
2048 |
+
10,2
|
2049 |
+
27,27
|
2050 |
+
4,9
|
2051 |
+
0,0
|
2052 |
+
15,2
|
2053 |
+
26,26
|
2054 |
+
1,1
|
2055 |
+
14,10
|
2056 |
+
4,18
|
2057 |
+
22,27
|
2058 |
+
24,24
|
2059 |
+
4,4
|
2060 |
+
10,1
|
2061 |
+
27,7
|
2062 |
+
4,27
|
2063 |
+
0,0
|
2064 |
+
4,4
|
2065 |
+
27,4
|
2066 |
+
10,6
|
2067 |
+
27,10
|
2068 |
+
27,27
|
2069 |
+
21,11
|
2070 |
+
10,27
|
2071 |
+
17,17
|
2072 |
+
27,27
|
2073 |
+
27,27
|
2074 |
+
7,7
|
2075 |
+
11,11
|
2076 |
+
3,2
|
2077 |
+
27,27
|
2078 |
+
18,18
|
2079 |
+
27,27
|
2080 |
+
27,3
|
2081 |
+
27,27
|
2082 |
+
4,3
|
2083 |
+
3,10
|
2084 |
+
4,7
|
2085 |
+
27,27
|
2086 |
+
0,27
|
2087 |
+
2,27
|
2088 |
+
27,27
|
2089 |
+
17,27
|
2090 |
+
27,27
|
2091 |
+
2,7
|
2092 |
+
2,27
|
2093 |
+
13,13
|
2094 |
+
3,27
|
2095 |
+
26,27
|
2096 |
+
27,18
|
2097 |
+
27,27
|
2098 |
+
0,0
|
2099 |
+
18,18
|
2100 |
+
0,0
|
2101 |
+
27,27
|
2102 |
+
25,25
|
2103 |
+
10,27
|
2104 |
+
15,15
|
2105 |
+
27,27
|
2106 |
+
12,27
|
2107 |
+
27,8
|
2108 |
+
3,3
|
2109 |
+
9,10
|
2110 |
+
2,2
|
2111 |
+
27,4
|
2112 |
+
12,22
|
2113 |
+
2,27
|
2114 |
+
12,22
|
2115 |
+
0,4
|
2116 |
+
1,1
|
2117 |
+
8,27
|
2118 |
+
4,4
|
2119 |
+
3,27
|
2120 |
+
17,26
|
2121 |
+
22,27
|
2122 |
+
22,26
|
2123 |
+
9,3
|
2124 |
+
1,1
|
2125 |
+
27,0
|
2126 |
+
0,27
|
2127 |
+
27,7
|
2128 |
+
27,27
|
2129 |
+
17,17
|
2130 |
+
3,3
|
2131 |
+
27,6
|
2132 |
+
15,15
|
2133 |
+
7,7
|
2134 |
+
10,10
|
2135 |
+
27,27
|
2136 |
+
3,3
|
2137 |
+
4,4
|
2138 |
+
18,0
|
2139 |
+
27,27
|
2140 |
+
15,15
|
2141 |
+
22,27
|
2142 |
+
27,27
|
2143 |
+
25,25
|
2144 |
+
0,17
|
2145 |
+
2,18
|
2146 |
+
27,27
|
2147 |
+
3,14
|
2148 |
+
2,27
|
2149 |
+
20,15
|
2150 |
+
0,0
|
2151 |
+
12,12
|
2152 |
+
0,18
|
2153 |
+
9,27
|
2154 |
+
17,0
|
2155 |
+
2,2
|
2156 |
+
27,0
|
2157 |
+
14,27
|
2158 |
+
27,27
|
2159 |
+
27,27
|
2160 |
+
15,15
|
2161 |
+
27,27
|
2162 |
+
18,18
|
2163 |
+
27,5
|
2164 |
+
7,7
|
2165 |
+
0,0
|
2166 |
+
14,14
|
2167 |
+
27,27
|
2168 |
+
0,18
|
2169 |
+
1,15
|
2170 |
+
27,3
|
2171 |
+
27,1
|
2172 |
+
7,20
|
2173 |
+
18,18
|
2174 |
+
27,2
|
2175 |
+
6,6
|
2176 |
+
5,5
|
2177 |
+
1,1
|
2178 |
+
27,27
|
2179 |
+
27,7
|
2180 |
+
0,0
|
2181 |
+
27,27
|
2182 |
+
8,8
|
2183 |
+
24,15
|
2184 |
+
0,0
|
2185 |
+
0,13
|
2186 |
+
17,17
|
2187 |
+
6,7
|
2188 |
+
27,27
|
2189 |
+
14,14
|
2190 |
+
10,7
|
2191 |
+
6,6
|
2192 |
+
4,27
|
2193 |
+
20,20
|
2194 |
+
27,17
|
2195 |
+
27,0
|
2196 |
+
0,0
|
2197 |
+
0,18
|
2198 |
+
10,27
|
2199 |
+
26,10
|
2200 |
+
27,27
|
2201 |
+
27,27
|
2202 |
+
18,0
|
2203 |
+
3,3
|
2204 |
+
0,0
|
2205 |
+
1,1
|
2206 |
+
7,27
|
2207 |
+
22,27
|
2208 |
+
12,12
|
2209 |
+
27,25
|
2210 |
+
27,27
|
2211 |
+
18,18
|
2212 |
+
11,27
|
2213 |
+
20,17
|
2214 |
+
4,27
|
2215 |
+
22,4
|
2216 |
+
27,27
|
2217 |
+
15,15
|
2218 |
+
3,27
|
2219 |
+
11,20
|
2220 |
+
0,0
|
2221 |
+
1,1
|
2222 |
+
7,7
|
2223 |
+
1,1
|
2224 |
+
27,27
|
2225 |
+
27,27
|
2226 |
+
3,27
|
2227 |
+
25,0
|
2228 |
+
2,0
|
2229 |
+
1,1
|
2230 |
+
1,1
|
2231 |
+
27,27
|
2232 |
+
4,14
|
2233 |
+
27,27
|
2234 |
+
0,0
|
2235 |
+
26,0
|
2236 |
+
3,2
|
2237 |
+
18,18
|
2238 |
+
10,27
|
2239 |
+
27,27
|
2240 |
+
4,4
|
2241 |
+
27,27
|
2242 |
+
25,27
|
2243 |
+
0,0
|
2244 |
+
15,17
|
2245 |
+
18,18
|
2246 |
+
1,1
|
2247 |
+
27,27
|
2248 |
+
0,0
|
2249 |
+
27,20
|
2250 |
+
27,27
|
2251 |
+
0,11
|
2252 |
+
27,8
|
2253 |
+
2,25
|
2254 |
+
25,25
|
2255 |
+
0,0
|
2256 |
+
18,18
|
2257 |
+
1,1
|
2258 |
+
3,3
|
2259 |
+
27,27
|
2260 |
+
27,4
|
2261 |
+
4,27
|
2262 |
+
27,27
|
2263 |
+
27,27
|
2264 |
+
27,27
|
2265 |
+
14,14
|
2266 |
+
7,7
|
2267 |
+
27,27
|
2268 |
+
27,27
|
2269 |
+
22,27
|
2270 |
+
27,27
|
2271 |
+
27,27
|
2272 |
+
27,27
|
2273 |
+
27,27
|
2274 |
+
7,7
|
2275 |
+
10,27
|
2276 |
+
24,24
|
2277 |
+
27,15
|
2278 |
+
10,3
|
2279 |
+
4,10
|
2280 |
+
3,2
|
2281 |
+
7,7
|
2282 |
+
27,0
|
2283 |
+
0,1
|
2284 |
+
27,27
|
2285 |
+
5,27
|
2286 |
+
11,10
|
2287 |
+
22,27
|
2288 |
+
17,13
|
2289 |
+
9,11
|
2290 |
+
18,18
|
2291 |
+
10,27
|
2292 |
+
25,24
|
2293 |
+
27,27
|
2294 |
+
15,15
|
2295 |
+
17,1
|
2296 |
+
27,7
|
2297 |
+
17,17
|
2298 |
+
15,15
|
2299 |
+
27,9
|
2300 |
+
0,4
|
2301 |
+
4,27
|
2302 |
+
17,17
|
2303 |
+
10,10
|
2304 |
+
7,7
|
2305 |
+
27,27
|
2306 |
+
18,18
|
2307 |
+
7,27
|
2308 |
+
15,0
|
2309 |
+
2,27
|
2310 |
+
4,27
|
2311 |
+
4,27
|
2312 |
+
15,15
|
2313 |
+
17,17
|
2314 |
+
22,0
|
2315 |
+
2,11
|
2316 |
+
22,27
|
2317 |
+
27,27
|
2318 |
+
27,27
|
2319 |
+
9,27
|
2320 |
+
19,9
|
2321 |
+
2,2
|
2322 |
+
2,2
|
2323 |
+
27,27
|
2324 |
+
14,27
|
2325 |
+
27,27
|
2326 |
+
15,15
|
2327 |
+
6,7
|
2328 |
+
1,1
|
2329 |
+
2,3
|
2330 |
+
1,1
|
2331 |
+
20,27
|
2332 |
+
27,27
|
2333 |
+
2,3
|
2334 |
+
0,0
|
2335 |
+
19,25
|
2336 |
+
15,15
|
2337 |
+
22,0
|
2338 |
+
17,27
|
2339 |
+
1,1
|
2340 |
+
27,27
|
2341 |
+
22,26
|
2342 |
+
22,22
|
2343 |
+
10,9
|
2344 |
+
15,15
|
2345 |
+
3,1
|
2346 |
+
3,2
|
2347 |
+
8,8
|
2348 |
+
20,20
|
2349 |
+
0,3
|
2350 |
+
4,0
|
2351 |
+
15,27
|
2352 |
+
2,27
|
2353 |
+
6,7
|
2354 |
+
15,15
|
2355 |
+
4,27
|
2356 |
+
27,3
|
2357 |
+
3,27
|
2358 |
+
6,6
|
2359 |
+
10,10
|
2360 |
+
25,24
|
2361 |
+
27,25
|
2362 |
+
7,7
|
2363 |
+
27,27
|
2364 |
+
18,18
|
2365 |
+
3,1
|
2366 |
+
27,5
|
2367 |
+
24,24
|
2368 |
+
27,27
|
2369 |
+
2,27
|
2370 |
+
27,27
|
2371 |
+
20,20
|
2372 |
+
27,11
|
2373 |
+
27,27
|
2374 |
+
0,0
|
2375 |
+
7,0
|
2376 |
+
2,1
|
2377 |
+
4,10
|
2378 |
+
11,27
|
2379 |
+
4,4
|
2380 |
+
7,13
|
2381 |
+
10,10
|
2382 |
+
7,7
|
2383 |
+
15,15
|
2384 |
+
27,27
|
2385 |
+
22,27
|
2386 |
+
4,4
|
2387 |
+
25,25
|
2388 |
+
0,0
|
2389 |
+
27,7
|
2390 |
+
9,10
|
2391 |
+
27,27
|
2392 |
+
7,7
|
2393 |
+
7,27
|
2394 |
+
2,3
|
2395 |
+
18,18
|
2396 |
+
0,0
|
2397 |
+
18,18
|
2398 |
+
6,7
|
2399 |
+
2,27
|
2400 |
+
26,26
|
2401 |
+
27,3
|
2402 |
+
14,14
|
2403 |
+
8,27
|
2404 |
+
27,27
|
2405 |
+
27,7
|
2406 |
+
27,10
|
2407 |
+
10,10
|
2408 |
+
27,27
|
2409 |
+
25,6
|
2410 |
+
0,0
|
2411 |
+
10,13
|
2412 |
+
0,27
|
2413 |
+
0,0
|
2414 |
+
27,27
|
2415 |
+
4,27
|
2416 |
+
27,9
|
2417 |
+
0,0
|
2418 |
+
7,7
|
2419 |
+
1,1
|
2420 |
+
13,13
|
2421 |
+
13,15
|
2422 |
+
0,0
|
2423 |
+
20,27
|
2424 |
+
9,1
|
2425 |
+
22,22
|
2426 |
+
1,1
|
2427 |
+
4,18
|
2428 |
+
24,24
|
2429 |
+
27,27
|
2430 |
+
27,27
|
2431 |
+
17,17
|
2432 |
+
3,27
|
2433 |
+
8,27
|
2434 |
+
3,10
|
2435 |
+
27,27
|
2436 |
+
22,7
|
2437 |
+
10,27
|
2438 |
+
27,27
|
2439 |
+
10,10
|
2440 |
+
9,24
|
2441 |
+
27,27
|
2442 |
+
1,1
|
2443 |
+
27,27
|
2444 |
+
27,27
|
2445 |
+
27,3
|
2446 |
+
7,7
|
2447 |
+
15,15
|
2448 |
+
17,27
|
2449 |
+
27,27
|
2450 |
+
27,27
|
2451 |
+
27,10
|
2452 |
+
8,20
|
2453 |
+
1,6
|
2454 |
+
27,13
|
2455 |
+
7,7
|
2456 |
+
27,27
|
2457 |
+
27,27
|
2458 |
+
1,1
|
2459 |
+
4,27
|
2460 |
+
4,27
|
2461 |
+
10,3
|
2462 |
+
0,0
|
2463 |
+
15,15
|
2464 |
+
20,5
|
2465 |
+
15,15
|
2466 |
+
6,7
|
2467 |
+
27,3
|
2468 |
+
9,27
|
2469 |
+
27,27
|
2470 |
+
3,3
|
2471 |
+
8,8
|
2472 |
+
18,18
|
2473 |
+
27,7
|
2474 |
+
27,9
|
2475 |
+
7,7
|
2476 |
+
27,27
|
2477 |
+
17,4
|
2478 |
+
10,1
|
2479 |
+
3,10
|
2480 |
+
0,17
|
2481 |
+
1,1
|
2482 |
+
27,10
|
2483 |
+
1,1
|
2484 |
+
4,5
|
2485 |
+
10,6
|
2486 |
+
5,5
|
2487 |
+
27,27
|
2488 |
+
3,10
|
2489 |
+
1,1
|
2490 |
+
20,5
|
2491 |
+
27,1
|
2492 |
+
13,0
|
2493 |
+
27,27
|
2494 |
+
10,6
|
2495 |
+
4,4
|
2496 |
+
2,2
|
2497 |
+
24,24
|
2498 |
+
7,7
|
2499 |
+
15,15
|
2500 |
+
27,27
|
2501 |
+
1,1
|
2502 |
+
0,0
|
2503 |
+
27,27
|
2504 |
+
17,17
|
2505 |
+
9,27
|
2506 |
+
1,1
|
2507 |
+
27,10
|
2508 |
+
0,0
|
2509 |
+
18,7
|
2510 |
+
27,27
|
2511 |
+
4,27
|
2512 |
+
17,0
|
2513 |
+
4,27
|
2514 |
+
27,3
|
2515 |
+
17,17
|
2516 |
+
7,6
|
2517 |
+
4,18
|
2518 |
+
27,10
|
2519 |
+
6,7
|
2520 |
+
27,2
|
2521 |
+
22,27
|
2522 |
+
18,0
|
2523 |
+
3,2
|
2524 |
+
25,24
|
2525 |
+
27,27
|
2526 |
+
27,27
|
2527 |
+
0,0
|
2528 |
+
27,27
|
2529 |
+
0,0
|
2530 |
+
18,18
|
2531 |
+
27,27
|
2532 |
+
27,27
|
2533 |
+
1,1
|
2534 |
+
15,20
|
2535 |
+
27,27
|
2536 |
+
2,2
|
2537 |
+
22,18
|
2538 |
+
7,7
|
2539 |
+
27,27
|
2540 |
+
27,2
|
2541 |
+
27,27
|
2542 |
+
15,15
|
2543 |
+
5,1
|
2544 |
+
0,0
|
2545 |
+
3,10
|
2546 |
+
3,27
|
2547 |
+
15,2
|
2548 |
+
27,27
|
2549 |
+
2,2
|
2550 |
+
17,1
|
2551 |
+
27,27
|
2552 |
+
27,27
|
2553 |
+
8,8
|
2554 |
+
27,27
|
2555 |
+
26,27
|
2556 |
+
27,27
|
2557 |
+
13,27
|
2558 |
+
15,15
|
2559 |
+
4,4
|
2560 |
+
27,27
|
2561 |
+
9,27
|
2562 |
+
4,0
|
2563 |
+
0,0
|
2564 |
+
27,27
|
2565 |
+
0,0
|
2566 |
+
3,27
|
2567 |
+
9,27
|
2568 |
+
27,9
|
2569 |
+
27,3
|
2570 |
+
27,27
|
2571 |
+
27,27
|
2572 |
+
7,14
|
2573 |
+
3,27
|
2574 |
+
27,27
|
2575 |
+
14,14
|
2576 |
+
27,3
|
2577 |
+
27,27
|
2578 |
+
4,4
|
2579 |
+
0,15
|
2580 |
+
12,12
|
2581 |
+
7,7
|
2582 |
+
1,1
|
2583 |
+
3,3
|
2584 |
+
20,20
|
2585 |
+
11,2
|
2586 |
+
27,27
|
2587 |
+
27,27
|
2588 |
+
27,27
|
2589 |
+
20,7
|
2590 |
+
27,26
|
2591 |
+
22,27
|
2592 |
+
1,1
|
2593 |
+
27,27
|
2594 |
+
1,1
|
2595 |
+
27,27
|
2596 |
+
0,0
|
2597 |
+
4,5
|
2598 |
+
4,4
|
2599 |
+
27,2
|
2600 |
+
27,27
|
2601 |
+
7,7
|
2602 |
+
0,0
|
2603 |
+
14,14
|
2604 |
+
4,27
|
2605 |
+
4,26
|
2606 |
+
15,15
|
2607 |
+
22,13
|
2608 |
+
1,1
|
2609 |
+
27,27
|
2610 |
+
5,20
|
2611 |
+
4,13
|
2612 |
+
10,10
|
2613 |
+
27,4
|
2614 |
+
6,27
|
2615 |
+
3,4
|
2616 |
+
17,17
|
2617 |
+
3,2
|
2618 |
+
7,7
|
2619 |
+
2,2
|
2620 |
+
27,27
|
2621 |
+
4,27
|
2622 |
+
1,1
|
2623 |
+
0,9
|
2624 |
+
0,0
|
2625 |
+
17,17
|
2626 |
+
5,5
|
2627 |
+
20,5
|
2628 |
+
27,10
|
2629 |
+
26,26
|
2630 |
+
27,27
|
2631 |
+
0,0
|
2632 |
+
7,7
|
2633 |
+
15,15
|
2634 |
+
8,8
|
2635 |
+
27,27
|
2636 |
+
11,3
|
2637 |
+
7,7
|
2638 |
+
27,10
|
2639 |
+
5,20
|
2640 |
+
10,18
|
2641 |
+
0,0
|
2642 |
+
0,0
|
2643 |
+
27,27
|
2644 |
+
0,9
|
2645 |
+
0,0
|
2646 |
+
18,18
|
2647 |
+
27,27
|
2648 |
+
27,4
|
2649 |
+
27,27
|
2650 |
+
27,27
|
2651 |
+
27,3
|
2652 |
+
0,18
|
2653 |
+
27,27
|
2654 |
+
27,27
|
2655 |
+
27,27
|
2656 |
+
22,0
|
2657 |
+
4,27
|
2658 |
+
4,27
|
2659 |
+
18,18
|
2660 |
+
27,27
|
2661 |
+
14,14
|
2662 |
+
27,27
|
2663 |
+
0,0
|
2664 |
+
5,27
|
2665 |
+
27,27
|
2666 |
+
3,27
|
2667 |
+
13,7
|
2668 |
+
9,27
|
2669 |
+
7,27
|
2670 |
+
4,4
|
2671 |
+
2,10
|
2672 |
+
0,0
|
2673 |
+
2,3
|
2674 |
+
1,1
|
2675 |
+
27,27
|
2676 |
+
10,27
|
2677 |
+
18,27
|
2678 |
+
27,10
|
2679 |
+
3,3
|
2680 |
+
27,27
|
2681 |
+
27,27
|
2682 |
+
27,27
|
2683 |
+
4,4
|
2684 |
+
27,27
|
2685 |
+
18,18
|
2686 |
+
15,3
|
2687 |
+
5,5
|
2688 |
+
1,1
|
2689 |
+
22,27
|
2690 |
+
18,18
|
2691 |
+
6,6
|
2692 |
+
6,27
|
2693 |
+
27,27
|
2694 |
+
7,15
|
2695 |
+
27,27
|
2696 |
+
14,14
|
2697 |
+
3,11
|
2698 |
+
11,14
|
2699 |
+
27,27
|
2700 |
+
18,18
|
2701 |
+
27,0
|
2702 |
+
1,1
|
2703 |
+
10,10
|
2704 |
+
27,0
|
2705 |
+
27,0
|
2706 |
+
27,27
|
2707 |
+
15,15
|
2708 |
+
27,27
|
2709 |
+
22,26
|
2710 |
+
27,27
|
2711 |
+
8,18
|
2712 |
+
27,27
|
2713 |
+
0,0
|
2714 |
+
0,0
|
2715 |
+
0,0
|
2716 |
+
7,7
|
2717 |
+
1,1
|
2718 |
+
3,10
|
2719 |
+
0,0
|
2720 |
+
18,18
|
2721 |
+
27,27
|
2722 |
+
0,0
|
2723 |
+
27,0
|
2724 |
+
7,7
|
2725 |
+
15,15
|
2726 |
+
27,27
|
2727 |
+
3,14
|
2728 |
+
27,27
|
2729 |
+
27,6
|
2730 |
+
27,27
|
2731 |
+
11,11
|
2732 |
+
4,0
|
2733 |
+
27,4
|
2734 |
+
6,10
|
2735 |
+
4,0
|
2736 |
+
0,0
|
2737 |
+
1,1
|
2738 |
+
4,27
|
2739 |
+
2,26
|
2740 |
+
10,27
|
2741 |
+
5,5
|
2742 |
+
0,0
|
2743 |
+
0,0
|
2744 |
+
0,0
|
2745 |
+
18,18
|
2746 |
+
18,18
|
2747 |
+
7,27
|
2748 |
+
27,27
|
2749 |
+
15,15
|
2750 |
+
27,27
|
2751 |
+
4,27
|
2752 |
+
27,27
|
2753 |
+
20,13
|
2754 |
+
27,9
|
2755 |
+
27,5
|
2756 |
+
15,15
|
2757 |
+
0,0
|
2758 |
+
27,25
|
2759 |
+
27,20
|
2760 |
+
13,13
|
2761 |
+
13,17
|
2762 |
+
1,1
|
2763 |
+
26,13
|
2764 |
+
25,7
|
2765 |
+
27,27
|
2766 |
+
0,20
|
2767 |
+
27,5
|
2768 |
+
14,14
|
2769 |
+
17,17
|
2770 |
+
27,13
|
2771 |
+
10,27
|
2772 |
+
22,10
|
2773 |
+
0,0
|
2774 |
+
6,27
|
2775 |
+
4,27
|
2776 |
+
3,3
|
2777 |
+
27,27
|
2778 |
+
12,12
|
2779 |
+
27,27
|
2780 |
+
25,9
|
2781 |
+
27,27
|
2782 |
+
27,27
|
2783 |
+
4,4
|
2784 |
+
20,27
|
2785 |
+
17,17
|
2786 |
+
0,0
|
2787 |
+
0,18
|
2788 |
+
15,15
|
2789 |
+
7,13
|
2790 |
+
27,27
|
2791 |
+
24,24
|
2792 |
+
27,27
|
2793 |
+
11,14
|
2794 |
+
27,10
|
2795 |
+
27,27
|
2796 |
+
0,0
|
2797 |
+
0,18
|
2798 |
+
13,0
|
2799 |
+
20,5
|
2800 |
+
0,0
|
2801 |
+
8,8
|
2802 |
+
27,27
|
2803 |
+
7,7
|
2804 |
+
0,0
|
2805 |
+
4,10
|
2806 |
+
27,7
|
2807 |
+
27,27
|
2808 |
+
1,1
|
2809 |
+
7,7
|
2810 |
+
3,27
|
2811 |
+
27,27
|
2812 |
+
1,1
|
2813 |
+
27,27
|
2814 |
+
5,18
|
2815 |
+
5,5
|
2816 |
+
3,27
|
2817 |
+
27,27
|
2818 |
+
4,4
|
2819 |
+
1,1
|
2820 |
+
0,0
|
2821 |
+
27,27
|
2822 |
+
4,4
|
2823 |
+
13,13
|
2824 |
+
11,9
|
2825 |
+
3,9
|
2826 |
+
2,7
|
2827 |
+
26,27
|
2828 |
+
9,9
|
2829 |
+
27,27
|
2830 |
+
27,7
|
2831 |
+
27,27
|
2832 |
+
27,27
|
2833 |
+
27,27
|
2834 |
+
9,9
|
2835 |
+
0,1
|
2836 |
+
1,27
|
2837 |
+
26,6
|
2838 |
+
0,0
|
2839 |
+
0,0
|
2840 |
+
27,22
|
2841 |
+
20,20
|
2842 |
+
27,27
|
2843 |
+
15,15
|
2844 |
+
25,25
|
2845 |
+
27,27
|
2846 |
+
27,27
|
2847 |
+
2,11
|
2848 |
+
0,4
|
2849 |
+
7,27
|
2850 |
+
3,2
|
2851 |
+
27,27
|
2852 |
+
15,0
|
2853 |
+
15,15
|
2854 |
+
27,27
|
2855 |
+
25,26
|
2856 |
+
8,8
|
2857 |
+
6,6
|
2858 |
+
27,27
|
2859 |
+
4,3
|
2860 |
+
0,0
|
2861 |
+
0,0
|
2862 |
+
0,0
|
2863 |
+
27,27
|
2864 |
+
3,3
|
2865 |
+
27,27
|
2866 |
+
27,10
|
2867 |
+
27,11
|
2868 |
+
3,7
|
2869 |
+
15,15
|
2870 |
+
0,0
|
2871 |
+
27,27
|
2872 |
+
18,18
|
2873 |
+
18,18
|
2874 |
+
0,0
|
2875 |
+
23,17
|
2876 |
+
3,3
|
2877 |
+
15,15
|
2878 |
+
15,15
|
2879 |
+
4,27
|
2880 |
+
15,17
|
2881 |
+
27,27
|
2882 |
+
26,27
|
2883 |
+
2,27
|
2884 |
+
13,0
|
2885 |
+
5,27
|
2886 |
+
9,9
|
2887 |
+
9,7
|
2888 |
+
15,15
|
2889 |
+
27,0
|
2890 |
+
27,22
|
2891 |
+
27,27
|
2892 |
+
4,10
|
2893 |
+
2,2
|
2894 |
+
13,7
|
2895 |
+
5,5
|
2896 |
+
10,27
|
2897 |
+
27,27
|
2898 |
+
2,2
|
2899 |
+
22,26
|
2900 |
+
13,13
|
2901 |
+
9,27
|
2902 |
+
22,27
|
2903 |
+
27,27
|
2904 |
+
7,7
|
2905 |
+
27,18
|
2906 |
+
27,27
|
2907 |
+
22,27
|
2908 |
+
3,27
|
2909 |
+
0,3
|
2910 |
+
3,27
|
2911 |
+
27,7
|
2912 |
+
26,26
|
2913 |
+
27,27
|
2914 |
+
15,0
|
2915 |
+
27,27
|
2916 |
+
27,10
|
2917 |
+
4,27
|
2918 |
+
4,4
|
2919 |
+
13,27
|
2920 |
+
26,27
|
2921 |
+
2,3
|
2922 |
+
22,6
|
2923 |
+
2,2
|
2924 |
+
27,27
|
2925 |
+
20,5
|
2926 |
+
1,1
|
2927 |
+
27,0
|
2928 |
+
3,26
|
2929 |
+
25,25
|
2930 |
+
9,9
|
2931 |
+
27,27
|
2932 |
+
0,0
|
2933 |
+
3,27
|
2934 |
+
1,1
|
2935 |
+
10,3
|
2936 |
+
15,15
|
2937 |
+
11,11
|
2938 |
+
7,27
|
2939 |
+
27,27
|
2940 |
+
1,1
|
2941 |
+
18,18
|
2942 |
+
18,18
|
2943 |
+
4,5
|
2944 |
+
4,4
|
2945 |
+
4,0
|
2946 |
+
4,4
|
2947 |
+
11,11
|
2948 |
+
27,27
|
2949 |
+
4,7
|
2950 |
+
0,0
|
2951 |
+
22,11
|
2952 |
+
18,18
|
2953 |
+
3,27
|
2954 |
+
0,0
|
2955 |
+
2,2
|
2956 |
+
18,18
|
2957 |
+
18,18
|
2958 |
+
18,0
|
2959 |
+
27,27
|
2960 |
+
2,2
|
2961 |
+
0,4
|
2962 |
+
27,27
|
2963 |
+
15,15
|
2964 |
+
15,15
|
2965 |
+
0,0
|
2966 |
+
7,7
|
2967 |
+
2,2
|
2968 |
+
0,0
|
2969 |
+
1,1
|
2970 |
+
7,7
|
2971 |
+
10,27
|
2972 |
+
4,0
|
2973 |
+
27,27
|
2974 |
+
0,0
|
2975 |
+
27,27
|
2976 |
+
6,7
|
2977 |
+
22,4
|
2978 |
+
27,27
|
2979 |
+
27,27
|
2980 |
+
6,5
|
2981 |
+
15,15
|
2982 |
+
0,15
|
2983 |
+
4,4
|
2984 |
+
10,10
|
2985 |
+
3,2
|
2986 |
+
15,15
|
2987 |
+
27,27
|
2988 |
+
27,27
|
2989 |
+
10,27
|
2990 |
+
6,27
|
2991 |
+
0,0
|
2992 |
+
25,24
|
2993 |
+
7,26
|
2994 |
+
2,27
|
2995 |
+
3,3
|
2996 |
+
8,8
|
2997 |
+
9,9
|
2998 |
+
3,27
|
2999 |
+
27,27
|
3000 |
+
11,27
|
3001 |
+
1,1
|
3002 |
+
15,15
|
3003 |
+
27,27
|
3004 |
+
27,27
|
3005 |
+
2,11
|
3006 |
+
7,7
|
3007 |
+
27,27
|
3008 |
+
16,27
|
3009 |
+
0,0
|
3010 |
+
3,2
|
3011 |
+
27,10
|
3012 |
+
18,18
|
3013 |
+
27,27
|
3014 |
+
11,27
|
3015 |
+
27,27
|
3016 |
+
20,27
|
3017 |
+
2,25
|
3018 |
+
17,17
|
3019 |
+
27,22
|
3020 |
+
15,15
|
3021 |
+
15,15
|
3022 |
+
0,0
|
3023 |
+
6,6
|
3024 |
+
4,4
|
3025 |
+
27,9
|
3026 |
+
27,0
|
3027 |
+
10,10
|
3028 |
+
6,6
|
3029 |
+
4,4
|
3030 |
+
9,3
|
3031 |
+
20,27
|
3032 |
+
0,0
|
3033 |
+
1,1
|
3034 |
+
27,27
|
3035 |
+
12,12
|
3036 |
+
9,0
|
3037 |
+
18,18
|
3038 |
+
0,0
|
3039 |
+
2,2
|
3040 |
+
3,18
|
3041 |
+
6,15
|
3042 |
+
1,1
|
3043 |
+
4,4
|
3044 |
+
15,15
|
3045 |
+
3,2
|
3046 |
+
2,3
|
3047 |
+
1,1
|
3048 |
+
26,2
|
3049 |
+
3,2
|
3050 |
+
27,27
|
3051 |
+
5,27
|
3052 |
+
5,27
|
3053 |
+
0,0
|
3054 |
+
15,15
|
3055 |
+
11,27
|
3056 |
+
7,27
|
3057 |
+
27,6
|
3058 |
+
18,18
|
3059 |
+
22,4
|
3060 |
+
4,15
|
3061 |
+
27,27
|
3062 |
+
5,27
|
3063 |
+
27,0
|
3064 |
+
27,27
|
3065 |
+
27,2
|
3066 |
+
2,2
|
3067 |
+
27,27
|
3068 |
+
3,10
|
3069 |
+
27,27
|
3070 |
+
4,27
|
3071 |
+
27,4
|
3072 |
+
13,13
|
3073 |
+
17,1
|
3074 |
+
27,27
|
3075 |
+
18,18
|
3076 |
+
10,3
|
3077 |
+
3,3
|
3078 |
+
5,27
|
3079 |
+
27,27
|
3080 |
+
27,27
|
3081 |
+
27,27
|
3082 |
+
4,27
|
3083 |
+
13,13
|
3084 |
+
1,1
|
3085 |
+
9,27
|
3086 |
+
27,27
|
3087 |
+
27,27
|
3088 |
+
5,27
|
3089 |
+
3,27
|
3090 |
+
27,7
|
3091 |
+
17,17
|
3092 |
+
4,27
|
3093 |
+
27,27
|
3094 |
+
7,7
|
3095 |
+
27,4
|
3096 |
+
15,15
|
3097 |
+
15,15
|
3098 |
+
15,15
|
3099 |
+
12,27
|
3100 |
+
27,27
|
3101 |
+
27,27
|
3102 |
+
22,1
|
3103 |
+
15,15
|
3104 |
+
9,27
|
3105 |
+
7,7
|
3106 |
+
15,15
|
3107 |
+
20,5
|
3108 |
+
27,27
|
3109 |
+
9,9
|
3110 |
+
15,15
|
3111 |
+
27,4
|
3112 |
+
27,27
|
3113 |
+
15,17
|
3114 |
+
10,27
|
3115 |
+
27,5
|
3116 |
+
27,1
|
3117 |
+
7,7
|
3118 |
+
12,27
|
3119 |
+
9,27
|
3120 |
+
27,27
|
3121 |
+
7,7
|
3122 |
+
15,15
|
3123 |
+
27,14
|
3124 |
+
0,0
|
3125 |
+
27,27
|
3126 |
+
16,27
|
3127 |
+
1,1
|
3128 |
+
27,3
|
3129 |
+
0,0
|
3130 |
+
7,27
|
3131 |
+
27,27
|
3132 |
+
26,0
|
3133 |
+
10,27
|
3134 |
+
18,18
|
3135 |
+
7,27
|
3136 |
+
27,27
|
3137 |
+
2,2
|
3138 |
+
6,6
|
3139 |
+
2,7
|
3140 |
+
27,27
|
3141 |
+
3,2
|
3142 |
+
27,27
|
3143 |
+
27,27
|
3144 |
+
15,13
|
3145 |
+
2,2
|
3146 |
+
18,18
|
3147 |
+
26,27
|
3148 |
+
27,27
|
3149 |
+
7,7
|
3150 |
+
7,27
|
3151 |
+
27,27
|
3152 |
+
1,27
|
3153 |
+
15,15
|
3154 |
+
27,27
|
3155 |
+
26,26
|
3156 |
+
27,27
|
3157 |
+
27,27
|
3158 |
+
9,13
|
3159 |
+
26,26
|
3160 |
+
7,7
|
3161 |
+
10,10
|
3162 |
+
15,0
|
3163 |
+
27,27
|
3164 |
+
27,27
|
3165 |
+
15,15
|
3166 |
+
7,7
|
3167 |
+
27,18
|
3168 |
+
20,27
|
3169 |
+
0,0
|
3170 |
+
27,10
|
3171 |
+
4,0
|
3172 |
+
27,20
|
3173 |
+
27,27
|
3174 |
+
5,17
|
3175 |
+
27,6
|
3176 |
+
7,7
|
3177 |
+
7,7
|
3178 |
+
4,4
|
3179 |
+
27,5
|
3180 |
+
0,27
|
3181 |
+
27,27
|
3182 |
+
18,18
|
3183 |
+
27,10
|
3184 |
+
27,27
|
3185 |
+
5,5
|
3186 |
+
27,27
|
3187 |
+
14,14
|
3188 |
+
15,13
|
3189 |
+
0,0
|
3190 |
+
27,27
|
3191 |
+
15,15
|
3192 |
+
15,15
|
3193 |
+
27,27
|
3194 |
+
27,27
|
3195 |
+
0,0
|
3196 |
+
27,27
|
3197 |
+
27,27
|
3198 |
+
27,7
|
3199 |
+
10,10
|
3200 |
+
3,10
|
3201 |
+
27,27
|
3202 |
+
27,0
|
3203 |
+
7,7
|
3204 |
+
8,17
|
3205 |
+
27,7
|
3206 |
+
5,5
|
3207 |
+
3,2
|
3208 |
+
15,15
|
3209 |
+
27,27
|
3210 |
+
27,27
|
3211 |
+
9,18
|
3212 |
+
2,2
|
3213 |
+
3,27
|
3214 |
+
18,1
|
3215 |
+
0,0
|
3216 |
+
17,1
|
3217 |
+
17,17
|
3218 |
+
0,0
|
3219 |
+
27,27
|
3220 |
+
11,1
|
3221 |
+
27,7
|
3222 |
+
27,27
|
3223 |
+
27,27
|
3224 |
+
27,27
|
3225 |
+
8,8
|
3226 |
+
1,1
|
3227 |
+
5,5
|
3228 |
+
15,15
|
3229 |
+
3,3
|
3230 |
+
17,17
|
3231 |
+
15,15
|
3232 |
+
27,27
|
3233 |
+
27,0
|
3234 |
+
2,2
|
3235 |
+
22,26
|
3236 |
+
3,7
|
3237 |
+
9,27
|
3238 |
+
5,5
|
3239 |
+
3,27
|
3240 |
+
27,27
|
3241 |
+
3,27
|
3242 |
+
7,26
|
3243 |
+
3,3
|
3244 |
+
4,4
|
3245 |
+
18,18
|
3246 |
+
26,27
|
3247 |
+
27,27
|
3248 |
+
0,1
|
3249 |
+
9,25
|
3250 |
+
27,27
|
3251 |
+
1,4
|
3252 |
+
25,25
|
3253 |
+
0,0
|
3254 |
+
18,18
|
3255 |
+
12,3
|
3256 |
+
10,10
|
3257 |
+
1,1
|
3258 |
+
27,27
|
3259 |
+
10,7
|
3260 |
+
6,27
|
3261 |
+
3,27
|
3262 |
+
27,27
|
3263 |
+
8,2
|
3264 |
+
3,2
|
3265 |
+
27,9
|
3266 |
+
27,27
|
3267 |
+
0,0
|
3268 |
+
0,0
|
3269 |
+
0,0
|
3270 |
+
20,17
|
3271 |
+
4,10
|
3272 |
+
7,7
|
3273 |
+
27,27
|
3274 |
+
15,15
|
3275 |
+
27,27
|
3276 |
+
1,1
|
3277 |
+
27,27
|
3278 |
+
20,27
|
3279 |
+
0,0
|
3280 |
+
1,1
|
3281 |
+
27,13
|
3282 |
+
27,27
|
3283 |
+
15,0
|
3284 |
+
11,27
|
3285 |
+
8,27
|
3286 |
+
0,0
|
3287 |
+
4,10
|
3288 |
+
27,13
|
3289 |
+
0,0
|
3290 |
+
0,0
|
3291 |
+
27,27
|
3292 |
+
13,15
|
3293 |
+
1,2
|
3294 |
+
8,8
|
3295 |
+
9,27
|
3296 |
+
27,7
|
3297 |
+
0,0
|
3298 |
+
3,11
|
3299 |
+
2,27
|
3300 |
+
9,2
|
3301 |
+
0,0
|
3302 |
+
27,27
|
3303 |
+
27,27
|
3304 |
+
0,0
|
3305 |
+
4,4
|
3306 |
+
0,0
|
3307 |
+
18,18
|
3308 |
+
27,18
|
3309 |
+
2,27
|
3310 |
+
0,0
|
3311 |
+
27,27
|
3312 |
+
19,6
|
3313 |
+
10,10
|
3314 |
+
27,27
|
3315 |
+
1,1
|
3316 |
+
4,9
|
3317 |
+
11,11
|
3318 |
+
0,0
|
3319 |
+
0,0
|
3320 |
+
27,27
|
3321 |
+
4,7
|
3322 |
+
27,7
|
3323 |
+
26,2
|
3324 |
+
6,26
|
3325 |
+
0,13
|
3326 |
+
27,27
|
3327 |
+
27,17
|
3328 |
+
22,27
|
3329 |
+
4,4
|
3330 |
+
1,1
|
3331 |
+
13,26
|
3332 |
+
3,3
|
3333 |
+
18,18
|
3334 |
+
4,27
|
3335 |
+
27,27
|
3336 |
+
27,27
|
3337 |
+
2,2
|
3338 |
+
2,26
|
3339 |
+
14,27
|
3340 |
+
20,27
|
3341 |
+
20,20
|
3342 |
+
14,14
|
3343 |
+
7,7
|
3344 |
+
27,27
|
3345 |
+
0,0
|
3346 |
+
27,27
|
3347 |
+
12,2
|
3348 |
+
27,27
|
3349 |
+
3,10
|
3350 |
+
3,27
|
3351 |
+
27,27
|
3352 |
+
24,24
|
3353 |
+
6,7
|
3354 |
+
27,27
|
3355 |
+
17,17
|
3356 |
+
4,4
|
3357 |
+
7,6
|
3358 |
+
25,25
|
3359 |
+
27,27
|
3360 |
+
15,13
|
3361 |
+
0,0
|
3362 |
+
4,0
|
3363 |
+
27,7
|
3364 |
+
15,15
|
3365 |
+
27,0
|
3366 |
+
27,27
|
3367 |
+
1,1
|
3368 |
+
27,10
|
3369 |
+
16,24
|
3370 |
+
2,27
|
3371 |
+
27,27
|
3372 |
+
1,1
|
3373 |
+
4,20
|
3374 |
+
27,27
|
3375 |
+
3,3
|
3376 |
+
3,27
|
3377 |
+
15,15
|
3378 |
+
2,3
|
3379 |
+
1,1
|
3380 |
+
7,26
|
3381 |
+
27,27
|
3382 |
+
27,27
|
3383 |
+
0,0
|
3384 |
+
7,7
|
3385 |
+
27,27
|
3386 |
+
4,0
|
3387 |
+
27,27
|
3388 |
+
4,0
|
3389 |
+
17,17
|
3390 |
+
0,0
|
3391 |
+
27,27
|
3392 |
+
8,8
|
3393 |
+
14,14
|
3394 |
+
27,27
|
3395 |
+
27,7
|
3396 |
+
3,27
|
3397 |
+
15,15
|
3398 |
+
20,5
|
3399 |
+
10,27
|
3400 |
+
10,27
|
3401 |
+
0,0
|
3402 |
+
27,27
|
3403 |
+
0,0
|
3404 |
+
27,5
|
3405 |
+
13,0
|
3406 |
+
0,0
|
3407 |
+
26,27
|
3408 |
+
15,15
|
3409 |
+
4,27
|
3410 |
+
27,27
|
3411 |
+
0,0
|
3412 |
+
6,27
|
3413 |
+
27,17
|
3414 |
+
14,2
|
3415 |
+
4,27
|
3416 |
+
25,25
|
3417 |
+
13,27
|
3418 |
+
27,4
|
3419 |
+
27,27
|
3420 |
+
14,9
|
3421 |
+
27,4
|
3422 |
+
4,4
|
3423 |
+
27,27
|
3424 |
+
18,18
|
3425 |
+
7,7
|
3426 |
+
27,27
|
3427 |
+
27,27
|
3428 |
+
27,27
|
3429 |
+
27,27
|
3430 |
+
10,10
|
3431 |
+
3,14
|
3432 |
+
10,27
|
3433 |
+
25,2
|
3434 |
+
11,11
|
3435 |
+
1,0
|
3436 |
+
1,1
|
3437 |
+
20,20
|
3438 |
+
7,7
|
3439 |
+
6,7
|
3440 |
+
13,27
|
3441 |
+
27,27
|
3442 |
+
2,2
|
3443 |
+
2,2
|
3444 |
+
2,2
|
3445 |
+
26,26
|
3446 |
+
13,4
|
3447 |
+
4,4
|
3448 |
+
7,27
|
3449 |
+
27,27
|
3450 |
+
1,1
|
3451 |
+
10,1
|
3452 |
+
6,27
|
3453 |
+
27,27
|
3454 |
+
27,27
|
3455 |
+
27,3
|
3456 |
+
4,27
|
3457 |
+
4,4
|
3458 |
+
6,4
|
3459 |
+
27,2
|
3460 |
+
1,1
|
3461 |
+
0,0
|
3462 |
+
27,27
|
3463 |
+
27,27
|
3464 |
+
9,20
|
3465 |
+
6,6
|
3466 |
+
21,0
|
3467 |
+
27,27
|
3468 |
+
2,3
|
3469 |
+
15,0
|
3470 |
+
3,27
|
3471 |
+
27,27
|
3472 |
+
27,27
|
3473 |
+
3,3
|
3474 |
+
0,0
|
3475 |
+
22,27
|
3476 |
+
27,4
|
3477 |
+
6,6
|
3478 |
+
27,27
|
3479 |
+
22,27
|
3480 |
+
1,1
|
3481 |
+
2,2
|
3482 |
+
1,1
|
3483 |
+
15,15
|
3484 |
+
7,14
|
3485 |
+
27,27
|
3486 |
+
20,20
|
3487 |
+
27,27
|
3488 |
+
0,20
|
3489 |
+
17,8
|
3490 |
+
0,15
|
3491 |
+
18,25
|
3492 |
+
27,27
|
3493 |
+
15,0
|
3494 |
+
27,27
|
3495 |
+
27,17
|
3496 |
+
25,25
|
3497 |
+
4,4
|
3498 |
+
27,5
|
3499 |
+
27,27
|
3500 |
+
2,2
|
3501 |
+
27,27
|
3502 |
+
2,2
|
3503 |
+
5,27
|
3504 |
+
5,4
|
3505 |
+
23,0
|
3506 |
+
22,4
|
3507 |
+
27,27
|
3508 |
+
0,18
|
3509 |
+
27,3
|
3510 |
+
3,3
|
3511 |
+
27,15
|
3512 |
+
27,27
|
3513 |
+
20,27
|
3514 |
+
27,10
|
3515 |
+
1,27
|
3516 |
+
0,0
|
3517 |
+
1,1
|
3518 |
+
0,0
|
3519 |
+
27,6
|
3520 |
+
9,9
|
3521 |
+
27,27
|
3522 |
+
7,7
|
3523 |
+
2,2
|
3524 |
+
27,27
|
3525 |
+
26,26
|
3526 |
+
26,7
|
3527 |
+
7,27
|
3528 |
+
27,27
|
3529 |
+
9,9
|
3530 |
+
2,3
|
3531 |
+
27,27
|
3532 |
+
22,22
|
3533 |
+
2,2
|
3534 |
+
27,27
|
3535 |
+
26,26
|
3536 |
+
1,1
|
3537 |
+
18,18
|
3538 |
+
1,0
|
3539 |
+
0,0
|
3540 |
+
27,27
|
3541 |
+
11,11
|
3542 |
+
17,17
|
3543 |
+
27,27
|
3544 |
+
3,3
|
3545 |
+
27,27
|
3546 |
+
2,2
|
3547 |
+
7,7
|
3548 |
+
26,26
|
3549 |
+
18,18
|
3550 |
+
27,27
|
3551 |
+
2,2
|
3552 |
+
27,27
|
3553 |
+
27,27
|
3554 |
+
20,20
|
3555 |
+
27,27
|
3556 |
+
0,0
|
3557 |
+
3,6
|
3558 |
+
27,6
|
3559 |
+
27,27
|
3560 |
+
27,7
|
3561 |
+
0,27
|
3562 |
+
0,0
|
3563 |
+
1,1
|
3564 |
+
4,20
|
3565 |
+
20,20
|
3566 |
+
27,27
|
3567 |
+
27,4
|
3568 |
+
0,0
|
3569 |
+
20,5
|
3570 |
+
4,27
|
3571 |
+
27,27
|
3572 |
+
26,26
|
3573 |
+
20,20
|
3574 |
+
4,2
|
3575 |
+
27,27
|
3576 |
+
27,27
|
3577 |
+
3,17
|
3578 |
+
19,5
|
3579 |
+
0,0
|
3580 |
+
27,1
|
3581 |
+
4,27
|
3582 |
+
7,7
|
3583 |
+
13,0
|
3584 |
+
14,7
|
3585 |
+
27,27
|
3586 |
+
27,27
|
3587 |
+
15,7
|
3588 |
+
27,27
|
3589 |
+
27,27
|
3590 |
+
27,7
|
3591 |
+
27,27
|
3592 |
+
11,11
|
3593 |
+
0,18
|
3594 |
+
15,15
|
3595 |
+
6,7
|
3596 |
+
6,6
|
3597 |
+
27,27
|
3598 |
+
27,27
|
3599 |
+
0,0
|
3600 |
+
24,24
|
3601 |
+
7,7
|
3602 |
+
4,27
|
3603 |
+
15,15
|
3604 |
+
27,27
|
3605 |
+
1,1
|
3606 |
+
3,27
|
3607 |
+
27,0
|
3608 |
+
11,27
|
3609 |
+
4,27
|
3610 |
+
27,27
|
3611 |
+
11,11
|
3612 |
+
7,7
|
3613 |
+
0,0
|
3614 |
+
1,1
|
3615 |
+
10,27
|
3616 |
+
3,2
|
3617 |
+
15,15
|
3618 |
+
13,27
|
3619 |
+
17,0
|
3620 |
+
26,27
|
3621 |
+
20,20
|
3622 |
+
27,27
|
3623 |
+
27,27
|
3624 |
+
20,27
|
3625 |
+
1,27
|
3626 |
+
4,4
|
3627 |
+
3,27
|
3628 |
+
7,7
|
3629 |
+
22,27
|
3630 |
+
26,26
|
3631 |
+
27,27
|
3632 |
+
23,4
|
3633 |
+
15,15
|
3634 |
+
7,7
|
3635 |
+
7,7
|
3636 |
+
27,27
|
3637 |
+
8,27
|
3638 |
+
4,27
|
3639 |
+
27,25
|
3640 |
+
20,26
|
3641 |
+
6,27
|
3642 |
+
2,27
|
3643 |
+
27,27
|
3644 |
+
14,14
|
3645 |
+
22,22
|
3646 |
+
27,27
|
3647 |
+
22,25
|
3648 |
+
0,15
|
3649 |
+
18,18
|
3650 |
+
27,7
|
3651 |
+
3,3
|
3652 |
+
27,27
|
3653 |
+
27,4
|
3654 |
+
18,0
|
3655 |
+
13,27
|
3656 |
+
24,9
|
3657 |
+
10,27
|
3658 |
+
27,27
|
3659 |
+
10,27
|
3660 |
+
18,18
|
3661 |
+
15,0
|
3662 |
+
0,0
|
3663 |
+
27,6
|
3664 |
+
0,0
|
3665 |
+
27,27
|
3666 |
+
20,27
|
3667 |
+
27,10
|
3668 |
+
3,9
|
3669 |
+
27,27
|
3670 |
+
27,27
|
3671 |
+
25,25
|
3672 |
+
3,3
|
3673 |
+
27,0
|
3674 |
+
15,15
|
3675 |
+
4,27
|
3676 |
+
1,1
|
3677 |
+
27,27
|
3678 |
+
1,1
|
3679 |
+
11,27
|
3680 |
+
15,15
|
3681 |
+
27,7
|
3682 |
+
0,13
|
3683 |
+
6,7
|
3684 |
+
4,20
|
3685 |
+
17,17
|
3686 |
+
27,10
|
3687 |
+
0,0
|
3688 |
+
9,27
|
3689 |
+
8,18
|
3690 |
+
22,26
|
3691 |
+
0,0
|
3692 |
+
0,0
|
3693 |
+
27,2
|
3694 |
+
11,11
|
3695 |
+
27,27
|
3696 |
+
11,3
|
3697 |
+
8,25
|
3698 |
+
10,1
|
3699 |
+
2,27
|
3700 |
+
4,4
|
3701 |
+
6,7
|
3702 |
+
4,27
|
3703 |
+
27,2
|
3704 |
+
24,20
|
3705 |
+
20,1
|
3706 |
+
27,27
|
3707 |
+
27,27
|
3708 |
+
15,15
|
3709 |
+
15,20
|
3710 |
+
10,10
|
3711 |
+
27,27
|
3712 |
+
2,3
|
3713 |
+
10,27
|
3714 |
+
8,8
|
3715 |
+
0,0
|
3716 |
+
22,0
|
3717 |
+
18,18
|
3718 |
+
0,0
|
3719 |
+
0,0
|
3720 |
+
0,0
|
3721 |
+
0,0
|
3722 |
+
20,5
|
3723 |
+
27,27
|
3724 |
+
0,0
|
3725 |
+
5,0
|
3726 |
+
3,4
|
3727 |
+
2,2
|
3728 |
+
9,27
|
3729 |
+
4,4
|
3730 |
+
8,0
|
3731 |
+
27,27
|
3732 |
+
9,3
|
3733 |
+
27,27
|
3734 |
+
5,27
|
3735 |
+
18,18
|
3736 |
+
4,17
|
3737 |
+
2,2
|
3738 |
+
27,27
|
3739 |
+
9,27
|
3740 |
+
14,14
|
3741 |
+
27,27
|
3742 |
+
26,26
|
3743 |
+
3,9
|
3744 |
+
15,0
|
3745 |
+
7,7
|
3746 |
+
0,0
|
3747 |
+
15,15
|
3748 |
+
4,4
|
3749 |
+
2,27
|
3750 |
+
27,3
|
3751 |
+
15,15
|
3752 |
+
18,18
|
3753 |
+
1,1
|
3754 |
+
4,27
|
3755 |
+
0,0
|
3756 |
+
27,27
|
3757 |
+
18,18
|
3758 |
+
27,7
|
3759 |
+
10,27
|
3760 |
+
15,15
|
3761 |
+
20,27
|
3762 |
+
2,2
|
3763 |
+
2,2
|
3764 |
+
0,0
|
3765 |
+
27,27
|
3766 |
+
2,27
|
3767 |
+
4,4
|
3768 |
+
27,11
|
3769 |
+
26,7
|
3770 |
+
1,1
|
3771 |
+
27,27
|
3772 |
+
6,7
|
3773 |
+
1,1
|
3774 |
+
10,0
|
3775 |
+
0,0
|
3776 |
+
2,3
|
3777 |
+
7,7
|
3778 |
+
26,26
|
3779 |
+
13,4
|
3780 |
+
27,27
|
3781 |
+
9,27
|
3782 |
+
15,15
|
3783 |
+
1,1
|
3784 |
+
27,27
|
3785 |
+
24,24
|
3786 |
+
8,17
|
3787 |
+
7,27
|
3788 |
+
22,11
|
3789 |
+
18,18
|
3790 |
+
1,1
|
3791 |
+
10,27
|
3792 |
+
3,10
|
3793 |
+
6,7
|
3794 |
+
4,4
|
3795 |
+
27,5
|
3796 |
+
27,9
|
3797 |
+
27,7
|
3798 |
+
4,4
|
3799 |
+
27,18
|
3800 |
+
15,15
|
3801 |
+
3,27
|
3802 |
+
27,0
|
3803 |
+
0,0
|
3804 |
+
1,1
|
3805 |
+
0,20
|
3806 |
+
27,27
|
3807 |
+
3,4
|
3808 |
+
1,1
|
3809 |
+
4,18
|
3810 |
+
4,4
|
3811 |
+
10,25
|
3812 |
+
15,15
|
3813 |
+
17,15
|
3814 |
+
27,4
|
3815 |
+
20,20
|
3816 |
+
15,0
|
3817 |
+
1,1
|
3818 |
+
4,27
|
3819 |
+
27,27
|
3820 |
+
4,27
|
3821 |
+
22,27
|
3822 |
+
15,15
|
3823 |
+
3,15
|
3824 |
+
17,18
|
3825 |
+
9,3
|
3826 |
+
27,27
|
3827 |
+
27,4
|
3828 |
+
27,0
|
3829 |
+
17,17
|
3830 |
+
26,27
|
3831 |
+
9,27
|
3832 |
+
27,10
|
3833 |
+
27,27
|
3834 |
+
9,6
|
3835 |
+
19,14
|
3836 |
+
0,0
|
3837 |
+
15,0
|
3838 |
+
4,6
|
3839 |
+
1,1
|
3840 |
+
5,27
|
3841 |
+
1,1
|
3842 |
+
27,27
|
3843 |
+
27,5
|
3844 |
+
4,17
|
3845 |
+
7,6
|
3846 |
+
27,27
|
3847 |
+
27,27
|
3848 |
+
10,10
|
3849 |
+
15,15
|
3850 |
+
27,27
|
3851 |
+
22,27
|
3852 |
+
12,12
|
3853 |
+
4,27
|
3854 |
+
17,17
|
3855 |
+
10,27
|
3856 |
+
14,14
|
3857 |
+
10,27
|
3858 |
+
20,20
|
3859 |
+
27,27
|
3860 |
+
25,0
|
3861 |
+
8,13
|
3862 |
+
27,27
|
3863 |
+
27,27
|
3864 |
+
6,7
|
3865 |
+
2,3
|
3866 |
+
17,18
|
3867 |
+
7,27
|
3868 |
+
18,27
|
3869 |
+
0,27
|
3870 |
+
8,8
|
3871 |
+
27,27
|
3872 |
+
18,18
|
3873 |
+
4,4
|
3874 |
+
10,6
|
3875 |
+
8,8
|
3876 |
+
7,7
|
3877 |
+
11,11
|
3878 |
+
0,0
|
3879 |
+
27,27
|
3880 |
+
27,27
|
3881 |
+
15,15
|
3882 |
+
7,27
|
3883 |
+
11,3
|
3884 |
+
27,27
|
3885 |
+
2,2
|
3886 |
+
27,27
|
3887 |
+
26,27
|
3888 |
+
27,27
|
3889 |
+
17,17
|
3890 |
+
3,27
|
3891 |
+
18,18
|
3892 |
+
7,27
|
3893 |
+
27,6
|
3894 |
+
17,17
|
3895 |
+
3,11
|
3896 |
+
18,18
|
3897 |
+
27,4
|
3898 |
+
1,1
|
3899 |
+
7,6
|
3900 |
+
3,3
|
3901 |
+
10,27
|
3902 |
+
20,20
|
3903 |
+
22,10
|
3904 |
+
0,0
|
3905 |
+
27,27
|
3906 |
+
0,0
|
3907 |
+
27,27
|
3908 |
+
27,5
|
3909 |
+
1,1
|
3910 |
+
22,22
|
3911 |
+
27,27
|
3912 |
+
3,3
|
3913 |
+
0,0
|
3914 |
+
15,15
|
3915 |
+
27,10
|
3916 |
+
27,27
|
3917 |
+
27,27
|
3918 |
+
22,27
|
3919 |
+
27,10
|
3920 |
+
27,27
|
3921 |
+
4,5
|
3922 |
+
15,15
|
3923 |
+
3,27
|
3924 |
+
7,7
|
3925 |
+
27,3
|
3926 |
+
4,27
|
3927 |
+
6,6
|
3928 |
+
0,0
|
3929 |
+
6,7
|
3930 |
+
14,11
|
3931 |
+
5,27
|
3932 |
+
27,0
|
3933 |
+
27,27
|
3934 |
+
7,27
|
3935 |
+
27,10
|
3936 |
+
15,15
|
3937 |
+
22,22
|
3938 |
+
15,15
|
3939 |
+
27,27
|
3940 |
+
2,2
|
3941 |
+
22,6
|
3942 |
+
27,9
|
3943 |
+
4,3
|
3944 |
+
0,0
|
3945 |
+
1,17
|
3946 |
+
10,27
|
3947 |
+
4,27
|
3948 |
+
0,0
|
3949 |
+
27,27
|
3950 |
+
27,27
|
3951 |
+
27,27
|
3952 |
+
6,6
|
3953 |
+
3,27
|
3954 |
+
22,1
|
3955 |
+
27,27
|
3956 |
+
27,7
|
3957 |
+
0,0
|
3958 |
+
27,27
|
3959 |
+
2,27
|
3960 |
+
4,4
|
3961 |
+
9,27
|
3962 |
+
3,27
|
3963 |
+
14,14
|
3964 |
+
6,0
|
3965 |
+
27,10
|
3966 |
+
10,10
|
3967 |
+
20,15
|
3968 |
+
27,27
|
3969 |
+
1,1
|
3970 |
+
15,1
|
3971 |
+
10,10
|
3972 |
+
27,18
|
3973 |
+
0,0
|
3974 |
+
10,10
|
3975 |
+
1,1
|
3976 |
+
27,27
|
3977 |
+
17,4
|
3978 |
+
27,1
|
3979 |
+
13,17
|
3980 |
+
27,27
|
3981 |
+
27,27
|
3982 |
+
2,2
|
3983 |
+
5,27
|
3984 |
+
27,27
|
3985 |
+
27,27
|
3986 |
+
2,3
|
3987 |
+
5,5
|
3988 |
+
27,27
|
3989 |
+
1,1
|
3990 |
+
9,27
|
3991 |
+
2,2
|
3992 |
+
4,27
|
3993 |
+
11,10
|
3994 |
+
27,27
|
3995 |
+
27,27
|
3996 |
+
27,7
|
3997 |
+
0,0
|
3998 |
+
18,18
|
3999 |
+
1,1
|
4000 |
+
0,0
|
4001 |
+
25,25
|
4002 |
+
7,2
|
4003 |
+
27,27
|
4004 |
+
5,27
|
4005 |
+
17,18
|
4006 |
+
20,27
|
4007 |
+
27,27
|
4008 |
+
27,27
|
4009 |
+
27,2
|
4010 |
+
26,26
|
4011 |
+
18,18
|
4012 |
+
27,0
|
4013 |
+
10,27
|
4014 |
+
27,27
|
4015 |
+
16,26
|
4016 |
+
27,27
|
4017 |
+
10,6
|
4018 |
+
0,0
|
4019 |
+
27,27
|
4020 |
+
26,26
|
4021 |
+
2,27
|
4022 |
+
17,17
|
4023 |
+
13,13
|
4024 |
+
5,10
|
4025 |
+
10,10
|
4026 |
+
4,4
|
4027 |
+
0,0
|
4028 |
+
27,27
|
4029 |
+
7,7
|
4030 |
+
14,27
|
4031 |
+
9,9
|
4032 |
+
1,0
|
4033 |
+
9,3
|
4034 |
+
27,7
|
4035 |
+
1,1
|
4036 |
+
27,6
|
4037 |
+
27,27
|
4038 |
+
18,18
|
4039 |
+
27,27
|
4040 |
+
6,7
|
4041 |
+
8,8
|
4042 |
+
14,14
|
4043 |
+
2,2
|
4044 |
+
3,2
|
4045 |
+
5,5
|
4046 |
+
0,0
|
4047 |
+
15,17
|
4048 |
+
27,27
|
4049 |
+
1,1
|
4050 |
+
3,18
|
4051 |
+
27,27
|
4052 |
+
15,15
|
4053 |
+
20,0
|
4054 |
+
27,27
|
4055 |
+
4,27
|
4056 |
+
3,27
|
4057 |
+
1,1
|
4058 |
+
18,18
|
4059 |
+
8,20
|
4060 |
+
15,15
|
4061 |
+
24,1
|
4062 |
+
9,15
|
4063 |
+
27,10
|
4064 |
+
8,18
|
4065 |
+
2,2
|
4066 |
+
1,27
|
4067 |
+
27,27
|
4068 |
+
10,27
|
4069 |
+
7,27
|
4070 |
+
10,27
|
4071 |
+
3,7
|
4072 |
+
25,25
|
4073 |
+
18,18
|
4074 |
+
27,27
|
4075 |
+
7,7
|
4076 |
+
10,10
|
4077 |
+
4,5
|
4078 |
+
4,4
|
4079 |
+
7,27
|
4080 |
+
27,4
|
4081 |
+
27,27
|
4082 |
+
27,3
|
4083 |
+
27,27
|
4084 |
+
0,0
|
4085 |
+
0,0
|
4086 |
+
27,27
|
4087 |
+
9,6
|
4088 |
+
4,0
|
4089 |
+
26,26
|
4090 |
+
16,27
|
4091 |
+
10,26
|
4092 |
+
17,17
|
4093 |
+
27,27
|
4094 |
+
0,1
|
4095 |
+
17,17
|
4096 |
+
0,0
|
4097 |
+
26,26
|
4098 |
+
27,27
|
4099 |
+
27,27
|
4100 |
+
2,27
|
4101 |
+
5,17
|
4102 |
+
1,1
|
4103 |
+
2,3
|
4104 |
+
9,15
|
4105 |
+
0,0
|
4106 |
+
18,27
|
4107 |
+
5,27
|
4108 |
+
5,20
|
4109 |
+
24,24
|
4110 |
+
0,0
|
4111 |
+
27,27
|
4112 |
+
14,14
|
4113 |
+
6,6
|
4114 |
+
7,7
|
4115 |
+
17,17
|
4116 |
+
27,27
|
4117 |
+
9,27
|
4118 |
+
18,18
|
4119 |
+
1,1
|
4120 |
+
10,10
|
4121 |
+
1,1
|
4122 |
+
27,27
|
4123 |
+
2,27
|
4124 |
+
6,7
|
4125 |
+
27,17
|
4126 |
+
27,27
|
4127 |
+
8,27
|
4128 |
+
27,3
|
4129 |
+
4,4
|
4130 |
+
17,17
|
4131 |
+
4,26
|
4132 |
+
7,27
|
4133 |
+
3,27
|
4134 |
+
1,1
|
4135 |
+
7,7
|
4136 |
+
10,10
|
4137 |
+
4,4
|
4138 |
+
27,2
|
4139 |
+
27,27
|
4140 |
+
10,10
|
4141 |
+
3,4
|
4142 |
+
1,1
|
4143 |
+
18,18
|
4144 |
+
6,3
|
4145 |
+
27,27
|
4146 |
+
3,18
|
4147 |
+
27,27
|
4148 |
+
10,10
|
4149 |
+
24,24
|
4150 |
+
4,27
|
4151 |
+
24,24
|
4152 |
+
27,7
|
4153 |
+
24,24
|
4154 |
+
25,25
|
4155 |
+
27,5
|
4156 |
+
8,17
|
4157 |
+
18,18
|
4158 |
+
27,25
|
4159 |
+
6,7
|
4160 |
+
9,27
|
4161 |
+
10,24
|
4162 |
+
2,10
|
4163 |
+
27,27
|
4164 |
+
27,2
|
4165 |
+
27,27
|
4166 |
+
27,27
|
4167 |
+
27,27
|
4168 |
+
10,27
|
4169 |
+
24,24
|
4170 |
+
2,11
|
4171 |
+
27,27
|
4172 |
+
7,7
|
4173 |
+
27,27
|
4174 |
+
1,1
|
4175 |
+
27,27
|
4176 |
+
27,27
|
4177 |
+
2,7
|
4178 |
+
20,15
|
4179 |
+
0,0
|
4180 |
+
27,27
|
4181 |
+
0,3
|
4182 |
+
2,27
|
4183 |
+
3,10
|
4184 |
+
0,13
|
4185 |
+
25,25
|
4186 |
+
13,13
|
4187 |
+
27,27
|
4188 |
+
27,27
|
4189 |
+
22,26
|
4190 |
+
12,26
|
4191 |
+
1,1
|
4192 |
+
26,7
|
4193 |
+
27,27
|
4194 |
+
0,17
|
4195 |
+
27,27
|
4196 |
+
27,27
|
4197 |
+
15,15
|
4198 |
+
0,0
|
4199 |
+
17,17
|
4200 |
+
27,1
|
4201 |
+
2,7
|
4202 |
+
1,1
|
4203 |
+
21,18
|
4204 |
+
7,7
|
4205 |
+
27,27
|
4206 |
+
4,4
|
4207 |
+
27,27
|
4208 |
+
27,27
|
4209 |
+
7,7
|
4210 |
+
27,27
|
4211 |
+
27,0
|
4212 |
+
27,0
|
4213 |
+
27,27
|
4214 |
+
14,14
|
4215 |
+
9,3
|
4216 |
+
18,18
|
4217 |
+
15,15
|
4218 |
+
4,4
|
4219 |
+
27,27
|
4220 |
+
15,15
|
4221 |
+
27,27
|
4222 |
+
10,0
|
4223 |
+
7,7
|
4224 |
+
20,20
|
4225 |
+
9,27
|
4226 |
+
4,27
|
4227 |
+
13,27
|
4228 |
+
15,15
|
4229 |
+
27,27
|
4230 |
+
6,27
|
4231 |
+
3,27
|
4232 |
+
11,2
|
4233 |
+
27,1
|
4234 |
+
0,0
|
4235 |
+
9,9
|
4236 |
+
27,10
|
4237 |
+
18,18
|
4238 |
+
1,1
|
4239 |
+
4,27
|
4240 |
+
27,27
|
4241 |
+
7,7
|
4242 |
+
2,6
|
4243 |
+
27,27
|
4244 |
+
27,0
|
4245 |
+
15,15
|
4246 |
+
7,27
|
4247 |
+
20,20
|
4248 |
+
27,27
|
4249 |
+
27,27
|
4250 |
+
27,27
|
4251 |
+
27,27
|
4252 |
+
10,27
|
4253 |
+
10,10
|
4254 |
+
27,27
|
4255 |
+
25,25
|
4256 |
+
27,27
|
4257 |
+
0,18
|
4258 |
+
27,2
|
4259 |
+
13,13
|
4260 |
+
15,15
|
4261 |
+
6,7
|
4262 |
+
1,2
|
4263 |
+
20,20
|
4264 |
+
9,0
|
4265 |
+
27,27
|
4266 |
+
10,3
|
4267 |
+
4,0
|
4268 |
+
15,15
|
4269 |
+
15,10
|
4270 |
+
7,7
|
4271 |
+
15,15
|
4272 |
+
9,3
|
4273 |
+
0,0
|
4274 |
+
0,0
|
4275 |
+
0,27
|
4276 |
+
27,27
|
4277 |
+
27,27
|
4278 |
+
17,27
|
4279 |
+
13,27
|
4280 |
+
2,11
|
4281 |
+
27,27
|
4282 |
+
27,27
|
4283 |
+
0,0
|
4284 |
+
9,27
|
4285 |
+
7,7
|
4286 |
+
27,27
|
4287 |
+
4,4
|
4288 |
+
27,27
|
4289 |
+
1,1
|
4290 |
+
27,27
|
4291 |
+
4,1
|
4292 |
+
25,27
|
4293 |
+
18,18
|
4294 |
+
20,20
|
4295 |
+
27,27
|
4296 |
+
27,27
|
4297 |
+
27,27
|
4298 |
+
7,27
|
4299 |
+
24,24
|
4300 |
+
0,0
|
4301 |
+
9,9
|
4302 |
+
17,27
|
4303 |
+
17,17
|
4304 |
+
4,27
|
4305 |
+
3,27
|
4306 |
+
22,9
|
4307 |
+
11,11
|
4308 |
+
0,0
|
4309 |
+
27,27
|
4310 |
+
7,7
|
4311 |
+
27,27
|
4312 |
+
7,7
|
4313 |
+
5,5
|
4314 |
+
9,3
|
4315 |
+
27,10
|
4316 |
+
25,27
|
4317 |
+
6,6
|
4318 |
+
27,27
|
4319 |
+
27,27
|
4320 |
+
27,27
|
4321 |
+
5,20
|
4322 |
+
27,27
|
4323 |
+
8,8
|
4324 |
+
27,3
|
4325 |
+
4,4
|
4326 |
+
27,27
|
4327 |
+
27,27
|
4328 |
+
10,11
|
4329 |
+
0,0
|
4330 |
+
10,27
|
4331 |
+
18,18
|
4332 |
+
27,26
|
4333 |
+
3,7
|
4334 |
+
18,7
|
4335 |
+
4,27
|
4336 |
+
0,0
|
4337 |
+
6,7
|
4338 |
+
6,6
|
4339 |
+
5,27
|
4340 |
+
0,18
|
4341 |
+
27,27
|
4342 |
+
27,27
|
4343 |
+
24,24
|
4344 |
+
2,2
|
4345 |
+
27,27
|
4346 |
+
7,7
|
4347 |
+
27,27
|
4348 |
+
27,1
|
4349 |
+
10,20
|
4350 |
+
27,7
|
4351 |
+
1,1
|
4352 |
+
0,0
|
4353 |
+
0,0
|
4354 |
+
27,27
|
4355 |
+
3,27
|
4356 |
+
6,6
|
4357 |
+
5,4
|
4358 |
+
0,0
|
4359 |
+
1,1
|
4360 |
+
27,27
|
4361 |
+
3,27
|
4362 |
+
5,5
|
4363 |
+
27,27
|
4364 |
+
26,26
|
4365 |
+
0,0
|
4366 |
+
7,7
|
4367 |
+
10,18
|
4368 |
+
19,27
|
4369 |
+
15,15
|
4370 |
+
6,6
|
4371 |
+
3,3
|
4372 |
+
0,0
|
4373 |
+
2,1
|
4374 |
+
1,1
|
4375 |
+
17,0
|
4376 |
+
8,20
|
4377 |
+
10,10
|
4378 |
+
0,0
|
4379 |
+
4,0
|
4380 |
+
3,18
|
4381 |
+
6,7
|
4382 |
+
3,2
|
4383 |
+
3,27
|
4384 |
+
27,27
|
4385 |
+
4,27
|
4386 |
+
7,27
|
4387 |
+
3,27
|
4388 |
+
11,3
|
4389 |
+
27,27
|
4390 |
+
18,18
|
4391 |
+
18,18
|
4392 |
+
4,4
|
4393 |
+
27,10
|
4394 |
+
27,27
|
4395 |
+
25,9
|
4396 |
+
25,25
|
4397 |
+
27,4
|
4398 |
+
3,3
|
4399 |
+
9,9
|
4400 |
+
1,27
|
4401 |
+
4,24
|
4402 |
+
4,4
|
4403 |
+
3,27
|
4404 |
+
27,27
|
4405 |
+
4,27
|
4406 |
+
18,18
|
4407 |
+
4,4
|
4408 |
+
27,27
|
4409 |
+
0,18
|
4410 |
+
27,27
|
4411 |
+
4,4
|
4412 |
+
5,4
|
4413 |
+
26,27
|
4414 |
+
1,1
|
4415 |
+
1,1
|
4416 |
+
27,27
|
4417 |
+
8,18
|
4418 |
+
0,0
|
4419 |
+
27,1
|
4420 |
+
17,0
|
4421 |
+
20,8
|
4422 |
+
7,27
|
4423 |
+
27,2
|
4424 |
+
27,27
|
4425 |
+
14,14
|
4426 |
+
27,27
|
4427 |
+
5,5
|
4428 |
+
3,2
|
4429 |
+
27,2
|
4430 |
+
15,15
|
4431 |
+
4,4
|
4432 |
+
17,7
|
4433 |
+
4,1
|
4434 |
+
14,14
|
4435 |
+
27,27
|
4436 |
+
2,27
|
4437 |
+
17,18
|
4438 |
+
1,1
|
4439 |
+
27,27
|
4440 |
+
4,27
|
4441 |
+
27,7
|
4442 |
+
0,0
|
4443 |
+
27,2
|
4444 |
+
27,27
|
4445 |
+
25,25
|
4446 |
+
27,14
|
4447 |
+
27,0
|
4448 |
+
4,27
|
4449 |
+
27,27
|
4450 |
+
1,1
|
4451 |
+
11,11
|
4452 |
+
27,27
|
4453 |
+
27,9
|
4454 |
+
6,6
|
4455 |
+
9,27
|
4456 |
+
18,18
|
4457 |
+
25,27
|
4458 |
+
13,13
|
4459 |
+
27,7
|
4460 |
+
27,26
|
4461 |
+
0,0
|
4462 |
+
17,17
|
4463 |
+
5,5
|
4464 |
+
4,4
|
4465 |
+
27,10
|
4466 |
+
22,27
|
4467 |
+
17,0
|
4468 |
+
1,1
|
4469 |
+
27,0
|
4470 |
+
15,15
|
4471 |
+
15,15
|
4472 |
+
27,27
|
4473 |
+
11,4
|
4474 |
+
27,27
|
4475 |
+
15,15
|
4476 |
+
27,17
|
4477 |
+
8,13
|
4478 |
+
5,15
|
4479 |
+
0,0
|
4480 |
+
27,27
|
4481 |
+
0,0
|
4482 |
+
11,1
|
4483 |
+
15,15
|
4484 |
+
27,27
|
4485 |
+
27,27
|
4486 |
+
9,10
|
4487 |
+
6,6
|
4488 |
+
27,27
|
4489 |
+
14,14
|
4490 |
+
15,0
|
4491 |
+
4,4
|
4492 |
+
3,3
|
4493 |
+
25,25
|
4494 |
+
10,0
|
4495 |
+
27,27
|
4496 |
+
27,27
|
4497 |
+
27,27
|
4498 |
+
27,27
|
4499 |
+
26,27
|
4500 |
+
27,27
|
4501 |
+
9,8
|
4502 |
+
3,3
|
4503 |
+
7,7
|
4504 |
+
5,5
|
4505 |
+
27,27
|
4506 |
+
27,4
|
4507 |
+
6,6
|
4508 |
+
14,14
|
4509 |
+
22,13
|
4510 |
+
10,9
|
4511 |
+
7,25
|
4512 |
+
22,12
|
4513 |
+
27,27
|
4514 |
+
27,27
|
4515 |
+
27,27
|
4516 |
+
14,27
|
4517 |
+
27,10
|
4518 |
+
6,7
|
4519 |
+
27,4
|
4520 |
+
27,5
|
4521 |
+
0,0
|
4522 |
+
25,25
|
4523 |
+
27,27
|
4524 |
+
15,15
|
4525 |
+
27,27
|
4526 |
+
3,2
|
4527 |
+
3,27
|
4528 |
+
20,20
|
4529 |
+
15,15
|
4530 |
+
6,6
|
4531 |
+
27,27
|
4532 |
+
27,27
|
4533 |
+
10,10
|
4534 |
+
15,15
|
4535 |
+
27,27
|
4536 |
+
27,27
|
4537 |
+
6,6
|
4538 |
+
7,7
|
4539 |
+
17,27
|
4540 |
+
0,7
|
4541 |
+
2,27
|
4542 |
+
27,27
|
4543 |
+
15,15
|
4544 |
+
27,27
|
4545 |
+
2,2
|
4546 |
+
14,14
|
4547 |
+
0,0
|
4548 |
+
4,27
|
4549 |
+
27,27
|
4550 |
+
19,7
|
4551 |
+
27,4
|
4552 |
+
22,27
|
4553 |
+
25,24
|
4554 |
+
10,27
|
4555 |
+
5,5
|
4556 |
+
27,27
|
4557 |
+
13,13
|
4558 |
+
27,2
|
4559 |
+
9,9
|
4560 |
+
27,27
|
4561 |
+
2,27
|
4562 |
+
27,27
|
4563 |
+
27,0
|
4564 |
+
0,13
|
4565 |
+
9,26
|
4566 |
+
0,0
|
4567 |
+
10,10
|
4568 |
+
20,27
|
4569 |
+
7,0
|
4570 |
+
27,27
|
4571 |
+
27,7
|
4572 |
+
6,6
|
4573 |
+
6,27
|
4574 |
+
0,4
|
4575 |
+
27,27
|
4576 |
+
25,25
|
4577 |
+
27,27
|
4578 |
+
27,27
|
4579 |
+
14,14
|
4580 |
+
27,27
|
4581 |
+
27,27
|
4582 |
+
6,9
|
4583 |
+
27,27
|
4584 |
+
4,15
|
4585 |
+
18,18
|
4586 |
+
7,26
|
4587 |
+
9,3
|
4588 |
+
0,0
|
4589 |
+
25,0
|
4590 |
+
24,24
|
4591 |
+
10,10
|
4592 |
+
1,1
|
4593 |
+
3,7
|
4594 |
+
27,27
|
4595 |
+
27,27
|
4596 |
+
27,27
|
4597 |
+
27,27
|
4598 |
+
26,26
|
4599 |
+
6,6
|
4600 |
+
4,27
|
4601 |
+
27,27
|
4602 |
+
27,27
|
4603 |
+
2,27
|
4604 |
+
7,7
|
4605 |
+
1,17
|
4606 |
+
4,27
|
4607 |
+
5,4
|
4608 |
+
27,2
|
4609 |
+
27,27
|
4610 |
+
4,4
|
4611 |
+
0,0
|
4612 |
+
1,1
|
4613 |
+
0,0
|
4614 |
+
7,20
|
4615 |
+
2,2
|
4616 |
+
3,2
|
4617 |
+
27,27
|
4618 |
+
6,27
|
4619 |
+
27,3
|
4620 |
+
4,4
|
4621 |
+
27,0
|
4622 |
+
27,27
|
4623 |
+
27,10
|
4624 |
+
14,11
|
4625 |
+
27,27
|
4626 |
+
27,27
|
4627 |
+
27,27
|
4628 |
+
27,0
|
4629 |
+
26,26
|
4630 |
+
25,27
|
4631 |
+
0,0
|
4632 |
+
0,0
|
4633 |
+
18,20
|
4634 |
+
0,15
|
4635 |
+
6,6
|
4636 |
+
27,27
|
4637 |
+
27,17
|
4638 |
+
1,1
|
4639 |
+
27,27
|
4640 |
+
4,4
|
4641 |
+
15,15
|
4642 |
+
7,26
|
4643 |
+
12,3
|
4644 |
+
27,5
|
4645 |
+
27,27
|
4646 |
+
27,6
|
4647 |
+
9,9
|
4648 |
+
15,15
|
4649 |
+
27,0
|
4650 |
+
24,27
|
4651 |
+
27,27
|
4652 |
+
0,0
|
4653 |
+
3,27
|
4654 |
+
27,27
|
4655 |
+
3,27
|
4656 |
+
10,27
|
4657 |
+
27,7
|
4658 |
+
4,27
|
4659 |
+
0,0
|
4660 |
+
0,17
|
4661 |
+
27,27
|
4662 |
+
21,0
|
4663 |
+
20,15
|
4664 |
+
13,13
|
4665 |
+
10,2
|
4666 |
+
15,20
|
4667 |
+
1,1
|
4668 |
+
0,0
|
4669 |
+
4,27
|
4670 |
+
10,18
|
4671 |
+
9,0
|
4672 |
+
10,10
|
4673 |
+
13,7
|
4674 |
+
27,27
|
4675 |
+
1,1
|
4676 |
+
26,0
|
4677 |
+
25,25
|
4678 |
+
10,10
|
4679 |
+
0,0
|
4680 |
+
2,2
|
4681 |
+
6,7
|
4682 |
+
0,0
|
4683 |
+
3,6
|
4684 |
+
27,7
|
4685 |
+
27,7
|
4686 |
+
27,5
|
4687 |
+
27,26
|
4688 |
+
27,27
|
4689 |
+
22,27
|
4690 |
+
7,0
|
4691 |
+
27,27
|
4692 |
+
4,10
|
4693 |
+
13,13
|
4694 |
+
18,18
|
4695 |
+
3,0
|
4696 |
+
0,0
|
4697 |
+
24,24
|
4698 |
+
4,27
|
4699 |
+
10,2
|
4700 |
+
4,5
|
4701 |
+
27,27
|
4702 |
+
26,26
|
4703 |
+
27,27
|
4704 |
+
2,2
|
4705 |
+
5,27
|
4706 |
+
27,27
|
4707 |
+
17,17
|
4708 |
+
27,27
|
4709 |
+
14,14
|
4710 |
+
3,3
|
4711 |
+
17,0
|
4712 |
+
27,27
|
4713 |
+
0,9
|
4714 |
+
17,27
|
4715 |
+
26,27
|
4716 |
+
0,0
|
4717 |
+
27,7
|
4718 |
+
2,2
|
4719 |
+
18,1
|
4720 |
+
15,13
|
4721 |
+
25,7
|
4722 |
+
27,27
|
4723 |
+
0,27
|
4724 |
+
27,0
|
4725 |
+
7,7
|
4726 |
+
4,20
|
4727 |
+
13,0
|
4728 |
+
0,0
|
4729 |
+
27,27
|
4730 |
+
27,27
|
4731 |
+
27,27
|
4732 |
+
2,2
|
4733 |
+
11,4
|
4734 |
+
20,20
|
4735 |
+
2,2
|
4736 |
+
5,27
|
4737 |
+
15,15
|
4738 |
+
14,14
|
4739 |
+
0,0
|
4740 |
+
13,13
|
4741 |
+
20,20
|
4742 |
+
2,3
|
4743 |
+
18,18
|
4744 |
+
27,27
|
4745 |
+
5,5
|
4746 |
+
1,1
|
4747 |
+
2,2
|
4748 |
+
27,15
|
4749 |
+
3,3
|
4750 |
+
27,0
|
4751 |
+
27,27
|
4752 |
+
26,3
|
4753 |
+
0,0
|
4754 |
+
11,3
|
4755 |
+
4,27
|
4756 |
+
19,24
|
4757 |
+
26,26
|
4758 |
+
1,1
|
4759 |
+
3,18
|
4760 |
+
7,7
|
4761 |
+
18,2
|
4762 |
+
27,27
|
4763 |
+
27,4
|
4764 |
+
0,0
|
4765 |
+
3,27
|
4766 |
+
0,0
|
4767 |
+
27,27
|
4768 |
+
27,0
|
4769 |
+
1,1
|
4770 |
+
27,0
|
4771 |
+
10,27
|
4772 |
+
21,0
|
4773 |
+
27,10
|
4774 |
+
12,12
|
4775 |
+
18,18
|
4776 |
+
9,27
|
4777 |
+
6,6
|
4778 |
+
27,27
|
4779 |
+
10,27
|
4780 |
+
10,6
|
4781 |
+
27,10
|
4782 |
+
27,27
|
4783 |
+
27,7
|
4784 |
+
27,27
|
4785 |
+
0,0
|
4786 |
+
3,27
|
4787 |
+
7,7
|
4788 |
+
14,14
|
4789 |
+
4,27
|
4790 |
+
27,27
|
4791 |
+
15,15
|
4792 |
+
27,27
|
4793 |
+
10,10
|
4794 |
+
18,18
|
4795 |
+
27,27
|
4796 |
+
14,14
|
4797 |
+
7,7
|
4798 |
+
7,7
|
4799 |
+
0,0
|
4800 |
+
6,6
|
4801 |
+
0,0
|
4802 |
+
27,27
|
4803 |
+
1,1
|
4804 |
+
7,7
|
4805 |
+
13,27
|
4806 |
+
15,15
|
4807 |
+
3,27
|
4808 |
+
27,27
|
4809 |
+
27,27
|
4810 |
+
27,27
|
4811 |
+
2,2
|
4812 |
+
17,17
|
4813 |
+
7,7
|
4814 |
+
1,1
|
4815 |
+
27,27
|
4816 |
+
20,20
|
4817 |
+
25,10
|
4818 |
+
20,20
|
4819 |
+
27,1
|
4820 |
+
17,13
|
4821 |
+
27,27
|
4822 |
+
0,5
|
4823 |
+
27,27
|
4824 |
+
15,0
|
4825 |
+
27,5
|
4826 |
+
25,24
|
4827 |
+
0,5
|
4828 |
+
10,27
|
4829 |
+
9,25
|
4830 |
+
2,10
|
4831 |
+
6,27
|
4832 |
+
27,1
|
4833 |
+
9,3
|
4834 |
+
27,27
|
4835 |
+
27,3
|
4836 |
+
8,8
|
4837 |
+
27,17
|
4838 |
+
0,0
|
4839 |
+
15,15
|
4840 |
+
27,0
|
4841 |
+
6,27
|
4842 |
+
20,27
|
4843 |
+
6,7
|
4844 |
+
27,27
|
4845 |
+
9,9
|
4846 |
+
4,0
|
4847 |
+
14,14
|
4848 |
+
6,6
|
4849 |
+
27,27
|
4850 |
+
26,25
|
4851 |
+
11,11
|
4852 |
+
27,27
|
4853 |
+
27,27
|
4854 |
+
7,3
|
4855 |
+
27,2
|
4856 |
+
2,27
|
4857 |
+
27,27
|
4858 |
+
20,17
|
4859 |
+
25,2
|
4860 |
+
10,10
|
4861 |
+
27,27
|
4862 |
+
0,0
|
4863 |
+
17,17
|
4864 |
+
24,24
|
4865 |
+
14,14
|
4866 |
+
1,1
|
4867 |
+
27,27
|
4868 |
+
27,27
|
4869 |
+
9,9
|
4870 |
+
14,14
|
4871 |
+
3,27
|
4872 |
+
27,27
|
4873 |
+
6,0
|
4874 |
+
27,27
|
4875 |
+
0,0
|
4876 |
+
27,27
|
4877 |
+
15,15
|
4878 |
+
14,14
|
4879 |
+
10,10
|
4880 |
+
4,27
|
4881 |
+
27,7
|
4882 |
+
17,17
|
4883 |
+
1,1
|
4884 |
+
27,27
|
4885 |
+
8,2
|
4886 |
+
2,2
|
4887 |
+
11,2
|
4888 |
+
27,4
|
4889 |
+
10,27
|
4890 |
+
18,18
|
4891 |
+
4,26
|
4892 |
+
25,25
|
4893 |
+
27,13
|
4894 |
+
27,27
|
4895 |
+
26,3
|
4896 |
+
27,27
|
4897 |
+
27,7
|
4898 |
+
0,0
|
4899 |
+
27,27
|
4900 |
+
27,27
|
4901 |
+
27,27
|
4902 |
+
7,7
|
4903 |
+
3,0
|
4904 |
+
2,2
|
4905 |
+
27,27
|
4906 |
+
27,27
|
4907 |
+
27,27
|
4908 |
+
1,1
|
4909 |
+
27,27
|
4910 |
+
3,3
|
4911 |
+
27,27
|
4912 |
+
0,18
|
4913 |
+
12,3
|
4914 |
+
3,7
|
4915 |
+
0,14
|
4916 |
+
27,27
|
4917 |
+
17,17
|
4918 |
+
27,27
|
4919 |
+
4,27
|
4920 |
+
27,3
|
4921 |
+
13,13
|
4922 |
+
27,27
|
4923 |
+
27,27
|
4924 |
+
7,27
|
4925 |
+
4,27
|
4926 |
+
27,27
|
4927 |
+
15,15
|
4928 |
+
1,1
|
4929 |
+
1,1
|
4930 |
+
27,26
|
4931 |
+
27,4
|
4932 |
+
7,7
|
4933 |
+
26,27
|
4934 |
+
15,15
|
4935 |
+
9,27
|
4936 |
+
27,27
|
4937 |
+
0,0
|
4938 |
+
4,27
|
4939 |
+
27,27
|
4940 |
+
27,27
|
4941 |
+
27,27
|
4942 |
+
6,7
|
4943 |
+
6,6
|
4944 |
+
27,4
|
4945 |
+
0,27
|
4946 |
+
8,20
|
4947 |
+
27,22
|
4948 |
+
0,0
|
4949 |
+
26,7
|
4950 |
+
26,26
|
4951 |
+
20,20
|
4952 |
+
27,27
|
4953 |
+
27,27
|
4954 |
+
27,27
|
4955 |
+
3,2
|
4956 |
+
27,10
|
4957 |
+
1,17
|
4958 |
+
24,24
|
4959 |
+
15,15
|
4960 |
+
10,27
|
4961 |
+
10,11
|
4962 |
+
27,22
|
4963 |
+
4,4
|
4964 |
+
14,13
|
4965 |
+
4,27
|
4966 |
+
27,27
|
4967 |
+
22,27
|
4968 |
+
18,18
|
4969 |
+
27,27
|
4970 |
+
27,27
|
4971 |
+
27,27
|
4972 |
+
27,27
|
4973 |
+
0,0
|
4974 |
+
27,18
|
4975 |
+
27,27
|
4976 |
+
3,27
|
4977 |
+
27,0
|
4978 |
+
27,27
|
4979 |
+
13,4
|
4980 |
+
27,27
|
4981 |
+
27,27
|
4982 |
+
10,27
|
4983 |
+
5,27
|
4984 |
+
27,27
|
4985 |
+
1,1
|
4986 |
+
4,0
|
4987 |
+
17,17
|
4988 |
+
15,15
|
4989 |
+
0,0
|
4990 |
+
27,27
|
4991 |
+
3,3
|
4992 |
+
0,0
|
4993 |
+
7,7
|
4994 |
+
6,26
|
4995 |
+
27,27
|
4996 |
+
15,15
|
4997 |
+
15,5
|
4998 |
+
0,17
|
4999 |
+
7,7
|
5000 |
+
27,27
|
5001 |
+
3,27
|
5002 |
+
1,1
|
5003 |
+
27,10
|
5004 |
+
20,27
|
5005 |
+
15,15
|
5006 |
+
27,27
|
5007 |
+
4,4
|
5008 |
+
0,27
|
5009 |
+
20,8
|
5010 |
+
4,27
|
5011 |
+
27,27
|
5012 |
+
3,14
|
5013 |
+
2,15
|
5014 |
+
27,27
|
5015 |
+
27,27
|
5016 |
+
15,15
|
5017 |
+
20,20
|
5018 |
+
11,27
|
5019 |
+
4,4
|
5020 |
+
8,7
|
5021 |
+
2,2
|
5022 |
+
27,27
|
5023 |
+
3,7
|
5024 |
+
6,6
|
5025 |
+
27,7
|
5026 |
+
2,2
|
5027 |
+
27,24
|
5028 |
+
1,1
|
5029 |
+
1,1
|
5030 |
+
4,4
|
5031 |
+
27,27
|
5032 |
+
5,5
|
5033 |
+
3,2
|
5034 |
+
27,27
|
5035 |
+
27,27
|
5036 |
+
13,8
|
5037 |
+
4,27
|
5038 |
+
27,27
|
5039 |
+
15,15
|
5040 |
+
27,27
|
5041 |
+
27,27
|
5042 |
+
4,4
|
5043 |
+
4,27
|
5044 |
+
22,1
|
5045 |
+
20,27
|
5046 |
+
8,8
|
5047 |
+
7,7
|
5048 |
+
22,27
|
5049 |
+
0,0
|
5050 |
+
0,27
|
5051 |
+
1,1
|
5052 |
+
4,4
|
5053 |
+
3,12
|
5054 |
+
27,10
|
5055 |
+
9,25
|
5056 |
+
18,7
|
5057 |
+
1,1
|
5058 |
+
26,2
|
5059 |
+
0,0
|
5060 |
+
0,18
|
5061 |
+
25,27
|
5062 |
+
11,7
|
5063 |
+
4,27
|
5064 |
+
25,25
|
5065 |
+
8,8
|
5066 |
+
3,2
|
5067 |
+
3,2
|
5068 |
+
27,10
|
5069 |
+
15,15
|
5070 |
+
27,10
|
5071 |
+
6,6
|
5072 |
+
14,14
|
5073 |
+
27,27
|
5074 |
+
18,18
|
5075 |
+
9,25
|
5076 |
+
0,18
|
5077 |
+
14,14
|
5078 |
+
27,5
|
5079 |
+
15,15
|
5080 |
+
27,0
|
5081 |
+
0,0
|
5082 |
+
4,27
|
5083 |
+
22,9
|
5084 |
+
25,25
|
5085 |
+
27,27
|
5086 |
+
27,27
|
5087 |
+
26,27
|
5088 |
+
13,13
|
5089 |
+
12,27
|
5090 |
+
12,27
|
5091 |
+
27,27
|
5092 |
+
0,0
|
5093 |
+
18,18
|
5094 |
+
7,27
|
5095 |
+
12,24
|
5096 |
+
5,5
|
5097 |
+
3,2
|
5098 |
+
18,18
|
5099 |
+
25,25
|
5100 |
+
9,27
|
5101 |
+
15,15
|
5102 |
+
4,27
|
5103 |
+
0,0
|
5104 |
+
4,20
|
5105 |
+
15,15
|
5106 |
+
18,18
|
5107 |
+
27,7
|
5108 |
+
10,27
|
5109 |
+
27,26
|
5110 |
+
3,25
|
5111 |
+
17,17
|
5112 |
+
0,0
|
5113 |
+
0,17
|
5114 |
+
9,27
|
5115 |
+
4,10
|
5116 |
+
27,27
|
5117 |
+
27,27
|
5118 |
+
1,1
|
5119 |
+
13,13
|
5120 |
+
27,7
|
5121 |
+
27,5
|
5122 |
+
0,17
|
5123 |
+
3,27
|
5124 |
+
3,9
|
5125 |
+
3,27
|
5126 |
+
8,20
|
5127 |
+
11,11
|
5128 |
+
27,27
|
5129 |
+
9,27
|
5130 |
+
0,0
|
5131 |
+
5,5
|
5132 |
+
6,7
|
5133 |
+
27,27
|
5134 |
+
27,27
|
5135 |
+
5,20
|
5136 |
+
3,2
|
5137 |
+
27,27
|
5138 |
+
4,27
|
5139 |
+
27,27
|
5140 |
+
10,27
|
5141 |
+
3,3
|
5142 |
+
20,0
|
5143 |
+
6,27
|
5144 |
+
27,27
|
5145 |
+
0,0
|
5146 |
+
7,7
|
5147 |
+
27,27
|
5148 |
+
18,1
|
5149 |
+
6,27
|
5150 |
+
13,15
|
5151 |
+
27,27
|
5152 |
+
0,0
|
5153 |
+
27,7
|
5154 |
+
18,18
|
5155 |
+
20,27
|
5156 |
+
1,0
|
5157 |
+
25,25
|
5158 |
+
27,4
|
5159 |
+
27,0
|
5160 |
+
27,27
|
5161 |
+
25,25
|
5162 |
+
25,25
|
5163 |
+
0,0
|
5164 |
+
3,2
|
5165 |
+
6,7
|
5166 |
+
3,27
|
5167 |
+
0,0
|
5168 |
+
0,0
|
5169 |
+
5,17
|
5170 |
+
2,2
|
5171 |
+
27,27
|
5172 |
+
15,15
|
5173 |
+
5,5
|
5174 |
+
4,27
|
5175 |
+
27,27
|
5176 |
+
2,26
|
5177 |
+
25,6
|
5178 |
+
3,3
|
5179 |
+
27,27
|
5180 |
+
0,0
|
5181 |
+
13,13
|
5182 |
+
27,10
|
5183 |
+
27,27
|
5184 |
+
27,27
|
5185 |
+
24,14
|
5186 |
+
27,13
|
5187 |
+
27,27
|
5188 |
+
27,27
|
5189 |
+
0,0
|
5190 |
+
1,1
|
5191 |
+
15,15
|
5192 |
+
4,4
|
5193 |
+
7,7
|
5194 |
+
2,2
|
5195 |
+
27,20
|
5196 |
+
18,0
|
5197 |
+
13,13
|
5198 |
+
6,27
|
5199 |
+
27,4
|
5200 |
+
27,27
|
5201 |
+
0,0
|
5202 |
+
6,10
|
5203 |
+
27,27
|
5204 |
+
7,7
|
5205 |
+
13,0
|
5206 |
+
4,4
|
5207 |
+
4,4
|
5208 |
+
1,1
|
5209 |
+
11,11
|
5210 |
+
27,27
|
5211 |
+
9,25
|
5212 |
+
27,27
|
5213 |
+
0,0
|
5214 |
+
15,15
|
5215 |
+
7,7
|
5216 |
+
0,27
|
5217 |
+
0,27
|
5218 |
+
25,25
|
5219 |
+
1,1
|
5220 |
+
27,1
|
5221 |
+
0,0
|
5222 |
+
27,27
|
5223 |
+
21,17
|
5224 |
+
5,5
|
5225 |
+
27,27
|
5226 |
+
6,7
|
5227 |
+
27,4
|
5228 |
+
4,9
|
5229 |
+
27,27
|
5230 |
+
27,27
|
5231 |
+
0,0
|
5232 |
+
27,27
|
5233 |
+
27,27
|
5234 |
+
27,27
|
5235 |
+
9,9
|
5236 |
+
27,27
|
5237 |
+
10,27
|
5238 |
+
8,20
|
5239 |
+
7,7
|
5240 |
+
7,7
|
5241 |
+
26,26
|
5242 |
+
10,10
|
5243 |
+
10,27
|
5244 |
+
15,15
|
5245 |
+
4,10
|
5246 |
+
26,26
|
5247 |
+
2,0
|
5248 |
+
1,1
|
5249 |
+
0,0
|
5250 |
+
27,27
|
5251 |
+
27,27
|
5252 |
+
1,1
|
5253 |
+
6,6
|
5254 |
+
0,0
|
5255 |
+
4,27
|
5256 |
+
25,25
|
5257 |
+
2,2
|
5258 |
+
0,18
|
5259 |
+
4,27
|
5260 |
+
27,27
|
5261 |
+
27,27
|
5262 |
+
0,0
|
5263 |
+
27,0
|
5264 |
+
4,27
|
5265 |
+
0,0
|
5266 |
+
20,27
|
5267 |
+
27,27
|
5268 |
+
4,4
|
5269 |
+
6,6
|
5270 |
+
0,0
|
5271 |
+
1,1
|
5272 |
+
27,27
|
5273 |
+
27,27
|
5274 |
+
27,4
|
5275 |
+
6,6
|
5276 |
+
20,20
|
5277 |
+
0,0
|
5278 |
+
7,7
|
5279 |
+
7,6
|
5280 |
+
0,15
|
5281 |
+
27,7
|
5282 |
+
9,25
|
5283 |
+
3,4
|
5284 |
+
27,27
|
5285 |
+
27,15
|
5286 |
+
27,27
|
5287 |
+
7,7
|
5288 |
+
3,15
|
5289 |
+
17,20
|
5290 |
+
27,27
|
5291 |
+
4,4
|
5292 |
+
26,26
|
5293 |
+
27,27
|
5294 |
+
0,0
|
5295 |
+
6,27
|
5296 |
+
27,3
|
5297 |
+
2,27
|
5298 |
+
27,27
|
5299 |
+
27,27
|
5300 |
+
0,1
|
5301 |
+
27,27
|
5302 |
+
3,27
|
5303 |
+
25,25
|
5304 |
+
10,2
|
5305 |
+
13,13
|
5306 |
+
0,0
|
5307 |
+
27,27
|
5308 |
+
18,18
|
5309 |
+
27,27
|
5310 |
+
27,27
|
5311 |
+
3,2
|
5312 |
+
27,5
|
5313 |
+
15,15
|
5314 |
+
7,7
|
5315 |
+
27,27
|
5316 |
+
3,27
|
5317 |
+
22,27
|
5318 |
+
3,27
|
5319 |
+
20,20
|
5320 |
+
10,27
|
5321 |
+
7,15
|
5322 |
+
9,25
|
5323 |
+
4,4
|
5324 |
+
27,27
|
5325 |
+
1,1
|
5326 |
+
27,27
|
5327 |
+
3,2
|
5328 |
+
27,27
|
5329 |
+
4,17
|
5330 |
+
0,0
|
5331 |
+
27,27
|
5332 |
+
4,27
|
5333 |
+
2,3
|
5334 |
+
0,0
|
5335 |
+
1,1
|
5336 |
+
0,4
|
5337 |
+
10,10
|
5338 |
+
25,25
|
5339 |
+
27,27
|
5340 |
+
27,27
|
5341 |
+
25,25
|
5342 |
+
11,2
|
5343 |
+
3,27
|
5344 |
+
25,25
|
5345 |
+
0,27
|
5346 |
+
22,27
|
5347 |
+
5,27
|
5348 |
+
8,27
|
5349 |
+
0,0
|
5350 |
+
27,27
|
5351 |
+
5,3
|
5352 |
+
0,0
|
5353 |
+
25,7
|
5354 |
+
27,7
|
5355 |
+
27,27
|
5356 |
+
27,2
|
5357 |
+
27,27
|
5358 |
+
8,8
|
5359 |
+
2,3
|
5360 |
+
27,7
|
5361 |
+
17,17
|
5362 |
+
27,13
|
5363 |
+
27,27
|
5364 |
+
9,20
|
5365 |
+
4,4
|
5366 |
+
15,15
|
5367 |
+
15,15
|
5368 |
+
9,3
|
5369 |
+
27,27
|
5370 |
+
13,7
|
5371 |
+
3,1
|
5372 |
+
10,10
|
5373 |
+
20,20
|
5374 |
+
5,0
|
5375 |
+
1,27
|
5376 |
+
27,27
|
5377 |
+
6,7
|
5378 |
+
27,27
|
5379 |
+
7,7
|
5380 |
+
4,4
|
5381 |
+
22,22
|
5382 |
+
10,10
|
5383 |
+
2,2
|
5384 |
+
8,27
|
5385 |
+
2,2
|
5386 |
+
0,0
|
5387 |
+
27,27
|
5388 |
+
7,27
|
5389 |
+
3,3
|
5390 |
+
27,27
|
5391 |
+
13,14
|
5392 |
+
0,0
|
5393 |
+
9,27
|
5394 |
+
8,5
|
5395 |
+
27,27
|
5396 |
+
6,3
|
5397 |
+
27,10
|
5398 |
+
1,1
|
5399 |
+
4,27
|
5400 |
+
18,18
|
5401 |
+
26,0
|
5402 |
+
22,27
|
5403 |
+
9,9
|
5404 |
+
27,27
|
5405 |
+
0,0
|
5406 |
+
1,1
|
5407 |
+
0,15
|
5408 |
+
27,27
|
5409 |
+
8,27
|
5410 |
+
15,15
|
5411 |
+
3,14
|
5412 |
+
9,9
|
5413 |
+
27,6
|
5414 |
+
3,0
|
5415 |
+
10,10
|
5416 |
+
7,25
|
5417 |
+
4,27
|
5418 |
+
18,18
|
5419 |
+
15,15
|
5420 |
+
27,27
|
5421 |
+
1,1
|
5422 |
+
27,14
|
5423 |
+
27,27
|
5424 |
+
15,15
|
5425 |
+
4,4
|
5426 |
+
27,27
|
5427 |
+
0,0
|
5428 |
+
27,27
|
ui.png
ADDED
![]() |
Git LFS Details
|