Spaces:
Sleeping
Sleeping
Delete emotions.py
Browse files- emotions.py +0 -235
emotions.py
DELETED
@@ -1,235 +0,0 @@
|
|
1 |
-
<<<<<<< HEAD
|
2 |
-
import pandas as pd
|
3 |
-
import torch
|
4 |
-
from datasets import load_dataset, Dataset
|
5 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
|
6 |
-
import numpy as np
|
7 |
-
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score, classification_report
|
8 |
-
|
9 |
-
# Load dataset
|
10 |
-
dataset = load_dataset("go_emotions")
|
11 |
-
|
12 |
-
# Print dataset columns
|
13 |
-
print("Dataset Columns Before Preprocessing:", dataset["train"].column_names)
|
14 |
-
|
15 |
-
# Ensure labels exist
|
16 |
-
if "labels" not in dataset["train"].column_names:
|
17 |
-
raise KeyError("Column 'labels' is missing! Check dataset structure.")
|
18 |
-
|
19 |
-
# Load tokenizer
|
20 |
-
model_checkpoint = "distilbert-base-uncased"
|
21 |
-
|
22 |
-
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
23 |
-
|
24 |
-
# Preprocessing function (Take only the first label for single-label classification)
|
25 |
-
def preprocess_data(batch):
|
26 |
-
encoding = tokenizer(batch["text"], padding="max_length", truncation=True)
|
27 |
-
|
28 |
-
# Take only the first label (for single-label classification)
|
29 |
-
encoding["labels"] = batch["labels"][0] if batch["labels"] else 0 # Default to 0 if empty
|
30 |
-
return encoding
|
31 |
-
|
32 |
-
# Tokenize dataset
|
33 |
-
encoded_dataset = dataset.map(preprocess_data, batched=False, remove_columns=["text"])
|
34 |
-
|
35 |
-
# Set format for PyTorch
|
36 |
-
encoded_dataset.set_format("torch")
|
37 |
-
|
38 |
-
# Load model for single-label classification (28 classes)
|
39 |
-
num_labels = 28 # Change based on dataset labels
|
40 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=num_labels)
|
41 |
-
|
42 |
-
# Training arguments
|
43 |
-
args = TrainingArguments(
|
44 |
-
output_dir="./results",
|
45 |
-
eval_strategy="epoch",
|
46 |
-
save_strategy="epoch",
|
47 |
-
save_total_limit=1,
|
48 |
-
logging_strategy="no",
|
49 |
-
per_device_train_batch_size=32, # Increase batch size
|
50 |
-
per_device_eval_batch_size=32,
|
51 |
-
num_train_epochs=2, # Reduce epochs
|
52 |
-
weight_decay=0.01,
|
53 |
-
load_best_model_at_end=True,
|
54 |
-
fp16=True, # Mixed precision for speedup
|
55 |
-
gradient_accumulation_steps=2, # Helps with large batch sizes
|
56 |
-
)
|
57 |
-
|
58 |
-
|
59 |
-
# Compute metrics function
|
60 |
-
def compute_metrics(eval_pred):
|
61 |
-
logits, labels = eval_pred
|
62 |
-
|
63 |
-
# Convert logits to class predictions
|
64 |
-
predictions = np.argmax(logits, axis=-1)
|
65 |
-
|
66 |
-
accuracy = accuracy_score(labels, predictions)
|
67 |
-
f1 = f1_score(labels, predictions, average="weighted")
|
68 |
-
|
69 |
-
return {"accuracy": accuracy, "f1": f1}
|
70 |
-
|
71 |
-
# Initialize Trainer
|
72 |
-
trainer = Trainer(
|
73 |
-
model=model,
|
74 |
-
args=args,
|
75 |
-
train_dataset=encoded_dataset["train"],
|
76 |
-
eval_dataset=encoded_dataset["validation"],
|
77 |
-
compute_metrics=compute_metrics
|
78 |
-
)
|
79 |
-
|
80 |
-
# Train model
|
81 |
-
trainer.train()
|
82 |
-
print("Training completed!")
|
83 |
-
|
84 |
-
# Save model and tokenizer
|
85 |
-
model.save_pretrained("./saved_model")
|
86 |
-
tokenizer.save_pretrained("./saved_model")
|
87 |
-
print("Model and tokenizer saved!")
|
88 |
-
|
89 |
-
# ====== Evaluation on Test Set ======
|
90 |
-
print("\nEvaluating model on test set...")
|
91 |
-
|
92 |
-
# Get test dataset
|
93 |
-
test_dataset = encoded_dataset["test"]
|
94 |
-
|
95 |
-
# Make predictions
|
96 |
-
predictions = trainer.predict(test_dataset)
|
97 |
-
logits = predictions.predictions
|
98 |
-
|
99 |
-
# Convert logits to class predictions
|
100 |
-
y_pred = np.argmax(logits, axis=-1)
|
101 |
-
y_true = test_dataset["labels"].numpy()
|
102 |
-
|
103 |
-
# Compute accuracy and F1-score
|
104 |
-
accuracy = accuracy_score(y_true, y_pred)
|
105 |
-
f1 = f1_score(y_true, y_pred, average="weighted")
|
106 |
-
|
107 |
-
# Print evaluation results
|
108 |
-
print("\nEvaluation Results:")
|
109 |
-
print(f"Test Accuracy: {accuracy:.4f}")
|
110 |
-
print(f"Test F1 Score: {f1:.4f}")
|
111 |
-
|
112 |
-
# Print classification report
|
113 |
-
print("\nClassification Report:\n", classification_report(y_true, y_pred))
|
114 |
-
|
115 |
-
# Save test results
|
116 |
-
pd.DataFrame({"true_labels": y_true.tolist(), "predicted_labels": y_pred.tolist()}).to_csv("test_results.csv", index=False)
|
117 |
-
print("Test results saved to 'test_results.csv'!")
|
118 |
-
=======
|
119 |
-
import pandas as pd
|
120 |
-
import torch
|
121 |
-
from datasets import load_dataset, Dataset
|
122 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
|
123 |
-
import numpy as np
|
124 |
-
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score, classification_report
|
125 |
-
|
126 |
-
# Load dataset
|
127 |
-
dataset = load_dataset("go_emotions")
|
128 |
-
|
129 |
-
# Print dataset columns
|
130 |
-
print("Dataset Columns Before Preprocessing:", dataset["train"].column_names)
|
131 |
-
|
132 |
-
# Ensure labels exist
|
133 |
-
if "labels" not in dataset["train"].column_names:
|
134 |
-
raise KeyError("Column 'labels' is missing! Check dataset structure.")
|
135 |
-
|
136 |
-
# Load tokenizer
|
137 |
-
model_checkpoint = "distilbert-base-uncased"
|
138 |
-
|
139 |
-
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
140 |
-
|
141 |
-
# Preprocessing function (Take only the first label for single-label classification)
|
142 |
-
def preprocess_data(batch):
|
143 |
-
encoding = tokenizer(batch["text"], padding="max_length", truncation=True)
|
144 |
-
|
145 |
-
# Take only the first label (for single-label classification)
|
146 |
-
encoding["labels"] = batch["labels"][0] if batch["labels"] else 0 # Default to 0 if empty
|
147 |
-
return encoding
|
148 |
-
|
149 |
-
# Tokenize dataset
|
150 |
-
encoded_dataset = dataset.map(preprocess_data, batched=False, remove_columns=["text"])
|
151 |
-
|
152 |
-
# Set format for PyTorch
|
153 |
-
encoded_dataset.set_format("torch")
|
154 |
-
|
155 |
-
# Load model for single-label classification (28 classes)
|
156 |
-
num_labels = 28 # Change based on dataset labels
|
157 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=num_labels)
|
158 |
-
|
159 |
-
# Training arguments
|
160 |
-
args = TrainingArguments(
|
161 |
-
output_dir="./results",
|
162 |
-
eval_strategy="epoch",
|
163 |
-
save_strategy="epoch",
|
164 |
-
save_total_limit=1,
|
165 |
-
logging_strategy="no",
|
166 |
-
per_device_train_batch_size=32, # Increase batch size
|
167 |
-
per_device_eval_batch_size=32,
|
168 |
-
num_train_epochs=2, # Reduce epochs
|
169 |
-
weight_decay=0.01,
|
170 |
-
load_best_model_at_end=True,
|
171 |
-
fp16=True, # Mixed precision for speedup
|
172 |
-
gradient_accumulation_steps=2, # Helps with large batch sizes
|
173 |
-
)
|
174 |
-
|
175 |
-
|
176 |
-
# Compute metrics function
|
177 |
-
def compute_metrics(eval_pred):
|
178 |
-
logits, labels = eval_pred
|
179 |
-
|
180 |
-
# Convert logits to class predictions
|
181 |
-
predictions = np.argmax(logits, axis=-1)
|
182 |
-
|
183 |
-
accuracy = accuracy_score(labels, predictions)
|
184 |
-
f1 = f1_score(labels, predictions, average="weighted")
|
185 |
-
|
186 |
-
return {"accuracy": accuracy, "f1": f1}
|
187 |
-
|
188 |
-
# Initialize Trainer
|
189 |
-
trainer = Trainer(
|
190 |
-
model=model,
|
191 |
-
args=args,
|
192 |
-
train_dataset=encoded_dataset["train"],
|
193 |
-
eval_dataset=encoded_dataset["validation"],
|
194 |
-
compute_metrics=compute_metrics
|
195 |
-
)
|
196 |
-
|
197 |
-
# Train model
|
198 |
-
trainer.train()
|
199 |
-
print("Training completed!")
|
200 |
-
|
201 |
-
# Save model and tokenizer
|
202 |
-
model.save_pretrained("./saved_model")
|
203 |
-
tokenizer.save_pretrained("./saved_model")
|
204 |
-
print("Model and tokenizer saved!")
|
205 |
-
|
206 |
-
# ====== Evaluation on Test Set ======
|
207 |
-
print("\nEvaluating model on test set...")
|
208 |
-
|
209 |
-
# Get test dataset
|
210 |
-
test_dataset = encoded_dataset["test"]
|
211 |
-
|
212 |
-
# Make predictions
|
213 |
-
predictions = trainer.predict(test_dataset)
|
214 |
-
logits = predictions.predictions
|
215 |
-
|
216 |
-
# Convert logits to class predictions
|
217 |
-
y_pred = np.argmax(logits, axis=-1)
|
218 |
-
y_true = test_dataset["labels"].numpy()
|
219 |
-
|
220 |
-
# Compute accuracy and F1-score
|
221 |
-
accuracy = accuracy_score(y_true, y_pred)
|
222 |
-
f1 = f1_score(y_true, y_pred, average="weighted")
|
223 |
-
|
224 |
-
# Print evaluation results
|
225 |
-
print("\nEvaluation Results:")
|
226 |
-
print(f"Test Accuracy: {accuracy:.4f}")
|
227 |
-
print(f"Test F1 Score: {f1:.4f}")
|
228 |
-
|
229 |
-
# Print classification report
|
230 |
-
print("\nClassification Report:\n", classification_report(y_true, y_pred))
|
231 |
-
|
232 |
-
# Save test results
|
233 |
-
pd.DataFrame({"true_labels": y_true.tolist(), "predicted_labels": y_pred.tolist()}).to_csv("test_results.csv", index=False)
|
234 |
-
print("Test results saved to 'test_results.csv'!")
|
235 |
-
>>>>>>> b1313c5d084e410cadf261f2fafd8929cb149a4f
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|