Spaces:
Sleeping
Sleeping
Delete intent_classifier.py
Browse files- intent_classifier.py +0 -102
intent_classifier.py
DELETED
@@ -1,102 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.optim as optim
|
4 |
-
from torch.utils.data import Dataset, DataLoader
|
5 |
-
from transformers import BertTokenizer, BertForSequenceClassification
|
6 |
-
from datasets import load_dataset
|
7 |
-
from tqdm import tqdm
|
8 |
-
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
|
9 |
-
|
10 |
-
# Check for CUDA
|
11 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
-
print(device)
|
13 |
-
|
14 |
-
# Load CLINC-OOS Dataset (Correct Config)
|
15 |
-
dataset = load_dataset("clinc_oos", "plus")
|
16 |
-
|
17 |
-
# Tokenizer
|
18 |
-
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
19 |
-
|
20 |
-
# Preprocess Dataset
|
21 |
-
class IntentDataset(Dataset):
|
22 |
-
def __init__(self, dataset_split):
|
23 |
-
self.texts = dataset_split["text"]
|
24 |
-
self.labels = dataset_split["intent"]
|
25 |
-
self.label_map = {label: i for i, label in enumerate(set(self.labels))} # Create label mapping
|
26 |
-
|
27 |
-
def __len__(self):
|
28 |
-
return len(self.texts)
|
29 |
-
|
30 |
-
def __getitem__(self, idx):
|
31 |
-
inputs = tokenizer(self.texts[idx], padding="max_length", truncation=True, max_length=64, return_tensors="pt")
|
32 |
-
label = self.labels[idx]
|
33 |
-
if label not in self.label_map:
|
34 |
-
raise ValueError(f"Unexpected label {label} found in dataset") # Debugging step
|
35 |
-
return {key: val.squeeze(0) for key, val in inputs.items()}, torch.tensor(self.label_map[label])
|
36 |
-
|
37 |
-
# Create Dataloaders
|
38 |
-
batch_size = 16
|
39 |
-
train_dataset = IntentDataset(dataset["train"])
|
40 |
-
test_dataset = IntentDataset(dataset["test"])
|
41 |
-
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
42 |
-
test_loader = DataLoader(test_dataset, batch_size=batch_size)
|
43 |
-
|
44 |
-
# Load Pretrained BERT Model
|
45 |
-
num_labels = len(set(dataset["train"]["intent"]))
|
46 |
-
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=num_labels).to(device)
|
47 |
-
|
48 |
-
# Loss & Optimizer
|
49 |
-
criterion = nn.CrossEntropyLoss()
|
50 |
-
optimizer = optim.AdamW(model.parameters(), lr=2e-5)
|
51 |
-
|
52 |
-
# Training Loop
|
53 |
-
num_epochs = 3
|
54 |
-
for epoch in range(num_epochs):
|
55 |
-
model.train()
|
56 |
-
total_loss = 0
|
57 |
-
correct = 0
|
58 |
-
total = 0
|
59 |
-
|
60 |
-
for batch in tqdm(train_loader, desc=f"Epoch {epoch+1}/{num_epochs} Training"):
|
61 |
-
inputs, labels = batch
|
62 |
-
inputs = {key: val.to(device) for key, val in inputs.items()}
|
63 |
-
labels = labels.to(device)
|
64 |
-
|
65 |
-
optimizer.zero_grad()
|
66 |
-
outputs = model(**inputs).logits
|
67 |
-
loss = criterion(outputs, labels)
|
68 |
-
loss.backward()
|
69 |
-
optimizer.step()
|
70 |
-
|
71 |
-
total_loss += loss.item()
|
72 |
-
correct += (outputs.argmax(dim=1) == labels).sum().item()
|
73 |
-
total += labels.size(0)
|
74 |
-
|
75 |
-
train_accuracy = correct / total
|
76 |
-
print(f"Epoch {epoch+1}/{num_epochs}, Loss: {total_loss:.4f}, Train Accuracy: {train_accuracy:.4f}")
|
77 |
-
|
78 |
-
# Evaluation on Test Set
|
79 |
-
model.eval()
|
80 |
-
all_preds, all_labels = [], []
|
81 |
-
|
82 |
-
with torch.no_grad():
|
83 |
-
for batch in tqdm(test_loader, desc="Testing"):
|
84 |
-
inputs, labels = batch
|
85 |
-
inputs = {key: val.to(device) for key, val in inputs.items()}
|
86 |
-
labels = labels.to(device)
|
87 |
-
|
88 |
-
outputs = model(**inputs).logits
|
89 |
-
preds = outputs.argmax(dim=1)
|
90 |
-
|
91 |
-
all_preds.extend(preds.cpu().numpy())
|
92 |
-
all_labels.extend(labels.cpu().numpy())
|
93 |
-
|
94 |
-
# Compute Metrics
|
95 |
-
accuracy = accuracy_score(all_labels, all_preds)
|
96 |
-
precision, recall, f1, _ = precision_recall_fscore_support(all_labels, all_preds, average="weighted")
|
97 |
-
|
98 |
-
print(f"Test Accuracy: {accuracy:.4f}")
|
99 |
-
print(f"Precision: {precision:.4f}, Recall: {recall:.4f}, F1-score: {f1:.4f}")
|
100 |
-
|
101 |
-
# Save Model
|
102 |
-
torch.save(model.state_dict(), "intent_classifier.pth")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|