from typing import Optional, List, Set, Union from huggingface_hub import hf_hub_download import gradio as gr import fasttext model = fasttext.load_model(hf_hub_download("NbAiLab/nb-nordic-lid", "model.bin")) model_labels = set(label[-3:] for label in model.get_labels()) def detect_lang( text: str, langs: Optional[Union[List, Set]]=None, threshold: float=-1.0, return_proba: bool=False ) -> Union[str, Tuple[str, float]]: """ This function takes in a text string and optional arguments for a list or set of languages to detect, a threshold for minimum probability of language detection, and a boolean for returning the probability of detected language. It uses a pre-defined model to predict the language of the text and returns the detected ISO-639-3 language code as a string. If the return_proba argument is set to True, it will also return a tuple with the language code and the probability of detection. If no language is detected, it will return "und" as the language code. Args: - text (str): The text to detect the language of. - langs (List or Set, optional): The list or set of languages to detect in the text. Defaults to all languages in the model's labels. - threshold (float, optional): The minimum probability for a language to be considered detected. Defaults to `-1.0`. - return_proba (bool, optional): Whether to return the language code and probability of detection as a tuple. Defaults to `False`. Returns: str or Tuple[str, float]: The detected language code as a string, or a tuple with the language code and probability of detection if return_proba is set to True. """ if langs: langs = set(langs) else: langs = model_labels raw_prediction = model.predict(text, threshold=threshold, k=-1) predictions = [ (label[-3:], min(probability, 1.0)) for label, probability in zip(*raw_prediction) if label[-3:] in langs ] if not predictions: return [("und", 1.0)] if return_proba else "und" else: return predictions if return_proba else predictions[0][0] def identify(text): return dict(detect_lang(text, return_proba=True)) iface = gr.Interface(fn=identify, inputs="text", outputs="label") iface.launch()