File size: 4,643 Bytes
69dba80
07ebfb1
 
 
 
 
 
5b11f8b
5aa1892
07ebfb1
311ebef
 
 
 
 
 
07ebfb1
446a864
 
07ebfb1
 
 
6351056
ad6cbd0
07ebfb1
1c4706b
769dbd6
1c4706b
 
 
 
 
84d6345
983c638
1c4706b
 
 
983c638
 
 
35af703
311ebef
983c638
602514f
 
 
 
 
311ebef
35af703
07ebfb1
6a3ae5e
 
 
 
 
 
 
 
 
 
 
 
c1541fb
07ebfb1
 
 
 
 
 
 
 
 
 
 
6a3ae5e
07ebfb1
 
 
 
 
3d53725
07ebfb1
 
 
 
 
 
 
 
 
0c101e3
446a864
07ebfb1
 
fa92b3f
07ebfb1
 
 
 
 
 
 
 
 
 
6a3ae5e
 
446a864
6a3ae5e
ad19622
07ebfb1
 
 
 
 
 
 
 
 
 
 
311ebef
 
85fc302
311ebef
85fc302
 
311ebef
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import time
import os

import torch

import gradio as gr
import pytube as pt
import spaces
from transformers import AutoFeatureExtractor, AutoTokenizer, WhisperForConditionalGeneration, WhisperProcessor, pipeline
from huggingface_hub import model_info
try:
    import flash_attn
    FLASH_ATTENTION = True
except ImportError:
    FLASH_ATTENTION = False


MODEL_NAME = "NbAiLab/nb-whisper-large"
lang = "no"

share = (os.environ.get("SHARE", "False")[0].lower() in "ty1") or None
auth_token = os.environ.get("AUTH_TOKEN") or True
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

@spaces.GPU(duration=60 * 2)
def pipe(file, return_timestamps=False):
    # model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, low_cpu_mem_usage=True)
    # model.to(device)
    # processor = WhisperProcessor.from_pretrained(MODEL_NAME)
    # model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
    # model.generation_config.cache_implementation = "static"
    asr = pipeline(
        task="automatic-speech-recognition",
        model=MODEL_NAME,
        # tokenizer=AutoTokenizer.from_pretrained(MODEL_NAME),
        # feature_extractor=AutoFeatureExtractor.from_pretrained(MODEL_NAME),
        chunk_length_s=30,
        device=device,
        token=auth_token,
        torch_dtype=torch.float16,
        model_kwargs={"attn_implementation": "flash_attention_2"} if FLASH_ATTENTION else {"attn_implementation": "sdpa"},
    )
    asr.model.config.forced_decoder_ids = asr.tokenizer.get_decoder_prompt_ids(
        language=lang,
        task="transcribe",
        no_timestamps=not return_timestamps,
    )
    # asr.model.config.no_timestamps_token_id = asr.tokenizer.encode("<|notimestamps|>", add_special_tokens=False)[0]
    return asr(file, return_timestamps=return_timestamps, batch_size=24)

def transcribe(file, return_timestamps=False):
    if not return_timestamps:
        text = pipe(file)["text"]
    else:
        chunks = pipe(file, return_timestamps=True)["chunks"]
        text = []
        for chunk in chunks:
            start_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][0])) if chunk["timestamp"][0] is not None else "??:??:??"
            end_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][1])) if chunk["timestamp"][1] is not None else "??:??:??"
            line = f"[{start_time} -> {end_time}] {chunk['text']}"
            text.append(line)
        text = "\n".join(text)
    return text


def _return_yt_html_embed(yt_url):
    video_id = yt_url.split("?v=")[-1]
    HTML_str = (
        f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
        " </center>"
    )
    return HTML_str


def yt_transcribe(yt_url, return_timestamps=False):
    yt = pt.YouTube(yt_url)
    html_embed_str = _return_yt_html_embed(yt_url)
    stream = yt.streams.filter(only_audio=True)[0]
    stream.download(filename="audio.mp3")

    text = transcribe("audio.mp3", return_timestamps=return_timestamps)

    return html_embed_str, text


demo = gr.Blocks()

mf_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.components.Audio(sources=['upload', 'microphone'], type="filepath"),
        gr.components.Checkbox(label="Return timestamps"),
    ],
    outputs="text",
    title="NB-Whisper Demo",
    description=(
        "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned"
        f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
        " of arbitrary length."
    ),
    allow_flagging="never",
)

yt_transcribe = gr.Interface(
    fn=yt_transcribe,
    inputs=[
        gr.components.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
        gr.components.Checkbox(label="Return timestamps"),
    ],
    examples=[["https://www.youtube.com/watch?v=mukeSSa5GKo"]],
    outputs=["html", "text"],
    title="Whisper Demo: Transcribe YouTube",
    description=(
        "Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:"
        f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of"
        " arbitrary length."
    ),
    allow_flagging="never",
)

with demo:
    gr.TabbedInterface([
        mf_transcribe,
        yt_transcribe
    ], [
        "Transkriber Lyd",
        "Transkriber YouTube"
    ])

demo.launch(share=share).queue()