Spaces:
Running
on
T4
Running
on
T4
import time | |
import os | |
import re | |
import torch | |
import torchaudio | |
import gradio as gr | |
import spaces | |
from transformers import AutoFeatureExtractor, AutoTokenizer, WhisperForConditionalGeneration, WhisperProcessor, pipeline | |
from huggingface_hub import model_info | |
try: | |
import flash_attn | |
FLASH_ATTENTION = True | |
except ImportError: | |
FLASH_ATTENTION = False | |
import yt_dlp # Added import for yt-dlp | |
MODEL_NAME = "NbAiLab/nb-whisper-large" | |
max_audio_length = 30 * 60 | |
share = (os.environ.get("SHARE", "False")[0].lower() in "ty1") or None | |
auth_token = os.environ.get("AUTH_TOKEN") or True | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
print(f"Bruker enhet: {device}") | |
def pipe(file, return_timestamps=False, lang="no"): | |
asr = pipeline( | |
task="automatic-speech-recognition", | |
model=MODEL_NAME, | |
chunk_length_s=28, | |
device=device, | |
token=auth_token, | |
torch_dtype=torch.float16, | |
model_kwargs={"attn_implementation": "flash_attention_2", "num_beams": 5, "language": lang} if FLASH_ATTENTION else {"attn_implementation": "sdpa", "num_beams": 5}, | |
) | |
asr.model.config.forced_decoder_ids = asr.tokenizer.get_decoder_prompt_ids( | |
language=lang, | |
task="transcribe", | |
no_timestamps=not return_timestamps, | |
) | |
return asr(file, return_timestamps=return_timestamps, batch_size=24, generate_kwargs={'task': 'transcribe', 'language': lang}) | |
def format_output(text): | |
text = re.sub(r'(\.{3,}|[.!:?])', lambda m: m.group() + '<br>', text) | |
return text | |
def transcribe(file, return_timestamps=False, lang_nn=False): | |
waveform, sample_rate = torchaudio.load(file) | |
audio_duration = waveform.size(1) / sample_rate | |
warning_message = None | |
if audio_duration > max_audio_length: | |
warning_message = ( | |
"<b style='color:red;'>⚠️ Advarsel:</b> " | |
"Lydfilen er lengre enn 30 minutter. Kun de første 30 minuttene vil bli transkribert." | |
) | |
waveform = waveform[:, :int(max_audio_length * sample_rate)] | |
truncated_file = "truncated_audio.wav" | |
torchaudio.save(truncated_file, waveform, sample_rate) | |
file_to_transcribe = truncated_file | |
truncated = True | |
else: | |
file_to_transcribe = file | |
truncated = False | |
if not lang_nn: | |
if not return_timestamps: | |
text = pipe(file_to_transcribe)["text"] | |
formatted_text = format_output(text) | |
else: | |
chunks = pipe(file_to_transcribe, return_timestamps=True)["chunks"] | |
text = [] | |
for chunk in chunks: | |
start_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][0])) if chunk["timestamp"][0] is not None else "??:??:??" | |
end_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][1])) if chunk["timestamp"][1] is not None else "??:??:??" | |
line = f"[{start_time} -> {end_time}] {chunk['text']}" | |
text.append(line) | |
formatted_text = "<br>".join(text) | |
else: | |
if not return_timestamps: | |
text = pipe(file_to_transcribe, lang="nn")["text"] | |
formatted_text = format_output(text) | |
else: | |
chunks = pipe(file_to_transcribe, return_timestamps=True, lang="nn")["chunks"] | |
text = [] | |
for chunk in chunks: | |
start_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][0])) if chunk["timestamp"][0] is not None else "??:??:??" | |
end_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][1])) if chunk["timestamp"][1] is not None else "??:??:??" | |
line = f"[{start_time} -> {end_time}] {chunk['text']}" | |
text.append(line) | |
formatted_text = "<br>".join(text) | |
output_file = "transcription.txt" | |
with open(output_file, "w") as f: | |
f.write(re.sub('<br>', '\n', formatted_text)) | |
if truncated: | |
link="https://github.com/NbAiLab/nostram/blob/main/leverandorer.md" | |
disclaimer = ( | |
"\n\n Dette er en demo. Det er ikke tillatt å bruke denne teksten i profesjonell sammenheng. " | |
"Vi anbefaler at hvis du trenger å transkribere lengre opptak, så kjører du enten modellen lokalt " | |
"eller sjekker denne siden for å se hvem som leverer løsninger basert på NB-Whisper: " | |
f"<a href='{link}' target='_blank'>denne siden</a>." | |
) | |
formatted_text += f"<br><br><i>{disclaimer}</i>" | |
formatted_text += "<br><br><i>Transkribert med NB-Whisper demo</i>" | |
return warning_message, formatted_text, output_file | |
def _return_yt_html_embed(yt_url): | |
video_id = yt_url.split("?v=")[-1] | |
HTML_str = ( | |
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
" </center>" | |
) | |
return HTML_str | |
def yt_transcribe(yt_url, return_timestamps=False): | |
html_embed_str = _return_yt_html_embed(yt_url) | |
ydl_opts = { | |
'format': 'bestaudio/best', | |
'outtmpl': 'audio.%(ext)s', | |
'postprocessors': [{ | |
'key': 'FFmpegExtractAudio', | |
'preferredcodec': 'mp3', | |
'preferredquality': '192', | |
}], | |
'quiet': True, | |
} | |
with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
ydl.download([yt_url]) | |
text = transcribe("audio.mp3", return_timestamps=return_timestamps) | |
return html_embed_str, text | |
# Lag Gradio-appen uten faner | |
demo = gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.green, secondary_hue=gr.themes.colors.red)) | |
with demo: | |
with gr.Column(): | |
gr.HTML(f"<img src='file/Logonew.png' style='width:190px;'>") | |
with gr.Column(scale=8): | |
# Use Markdown for title and description | |
gr.Markdown( | |
""" | |
<h1 style="font-size: 3.5em;">NB-Whisper Demo</h1> | |
""" | |
) | |
mf_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.components.Audio(sources=['upload', 'microphone'], type="filepath"), | |
gr.components.Checkbox(label="Inkluder tidskoder"), | |
gr.components.Checkbox(label="Nynorsk"), | |
], | |
outputs=[ | |
gr.HTML(label="Varsel"), | |
gr.HTML(label="text"), | |
gr.File(label="Last ned transkripsjon") # Removed right side space in the box | |
], | |
description=( | |
"Demoen bruker" | |
f" modellen [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) til å transkribere lydfiler opp til 30 minutter." | |
), | |
allow_flagging="never", | |
) | |
# Start demoen uten faner | |
demo.launch(share=share, show_api=False, allowed_paths=["Logonew.png"]).queue() |