Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import os
|
|
3 |
import re
|
4 |
|
5 |
import torch
|
|
|
6 |
|
7 |
import gradio as gr
|
8 |
import spaces
|
@@ -21,6 +22,8 @@ lang = "no"
|
|
21 |
|
22 |
logo_path = os.path.join(os.path.dirname(__file__), "Logo_2.png")
|
23 |
|
|
|
|
|
24 |
share = (os.environ.get("SHARE", "False")[0].lower() in "ty1") or None
|
25 |
auth_token = os.environ.get("AUTH_TOKEN") or True
|
26 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
@@ -52,11 +55,25 @@ def format_output(text):
|
|
52 |
return text
|
53 |
|
54 |
def transcribe(file, return_timestamps=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
if not return_timestamps:
|
56 |
-
text = pipe(
|
57 |
formatted_text = format_output(text)
|
58 |
else:
|
59 |
-
chunks = pipe(
|
60 |
text = []
|
61 |
for chunk in chunks:
|
62 |
start_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][0])) if chunk["timestamp"][0] is not None else "??:??:??"
|
@@ -64,7 +81,19 @@ def transcribe(file, return_timestamps=False):
|
|
64 |
line = f"[{start_time} -> {end_time}] {chunk['text']}"
|
65 |
text.append(line)
|
66 |
formatted_text = "\n".join(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
formatted_text += "<br><br><i>Transkribert med NB-Whisper demo</i>"
|
|
|
|
|
68 |
return formatted_text
|
69 |
|
70 |
def _return_yt_html_embed(yt_url):
|
@@ -101,13 +130,6 @@ demo = gr.Blocks()
|
|
101 |
|
102 |
with demo:
|
103 |
with gr.Row():
|
104 |
-
#with gr.Column(scale=1, min_width=120):
|
105 |
-
#gr.Markdown(
|
106 |
-
#f"""
|
107 |
-
#gr.Markdown("!local img[]({logo_path})")
|
108 |
-
|
109 |
-
#"""
|
110 |
-
#)
|
111 |
gr.HTML("<img src='file/Logo_2.png'>")
|
112 |
with gr.Column(scale=8):
|
113 |
# Use Markdown for title and description
|
|
|
3 |
import re
|
4 |
|
5 |
import torch
|
6 |
+
import torchaudio
|
7 |
|
8 |
import gradio as gr
|
9 |
import spaces
|
|
|
22 |
|
23 |
logo_path = os.path.join(os.path.dirname(__file__), "Logo_2.png")
|
24 |
|
25 |
+
max_audio_length= 1 * 60
|
26 |
+
|
27 |
share = (os.environ.get("SHARE", "False")[0].lower() in "ty1") or None
|
28 |
auth_token = os.environ.get("AUTH_TOKEN") or True
|
29 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
55 |
return text
|
56 |
|
57 |
def transcribe(file, return_timestamps=False):
|
58 |
+
waveform, sample_rate = torchaudio.load(file)
|
59 |
+
audio_duration = waveform.size(1) / sample_rate
|
60 |
+
|
61 |
+
if audio_duration > MAX_AUDIO_LENGTH:
|
62 |
+
# Trim the waveform to the first 30 minutes
|
63 |
+
waveform = waveform[:, :int(MAX_AUDIO_LENGTH * sample_rate)]
|
64 |
+
truncated_file = "truncated_audio.wav"
|
65 |
+
torchaudio.save(truncated_file, waveform, sample_rate)
|
66 |
+
file_to_transcribe = truncated_file
|
67 |
+
truncated = True
|
68 |
+
else:
|
69 |
+
file_to_transcribe = file
|
70 |
+
truncated = False
|
71 |
+
|
72 |
if not return_timestamps:
|
73 |
+
text = pipe(file_to_transcribe)["text"]
|
74 |
formatted_text = format_output(text)
|
75 |
else:
|
76 |
+
chunks = pipe(file_to_transcribe, return_timestamps=True)["chunks"]
|
77 |
text = []
|
78 |
for chunk in chunks:
|
79 |
start_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][0])) if chunk["timestamp"][0] is not None else "??:??:??"
|
|
|
81 |
line = f"[{start_time} -> {end_time}] {chunk['text']}"
|
82 |
text.append(line)
|
83 |
formatted_text = "\n".join(text)
|
84 |
+
|
85 |
+
if truncated:
|
86 |
+
disclaimer = (
|
87 |
+
"\n\nDette er en demo. Det er ikke tillatt å bruke denne teksten i profesjonell sammenheng. "
|
88 |
+
"Vi anbefaler at hvis du trenger å transkribere lengre opptak, så kjører du enten modellen lokalt "
|
89 |
+
"eller sjekker denne siden for å se hvem som leverer løsninger basert på NB-Whisper: "
|
90 |
+
"https://github.com/NbAiLab/nostram/blob/main/leverandorer.md"
|
91 |
+
)
|
92 |
+
formatted_text += f"<br><br><i>{disclaimer}</i>"
|
93 |
+
|
94 |
formatted_text += "<br><br><i>Transkribert med NB-Whisper demo</i>"
|
95 |
+
|
96 |
+
|
97 |
return formatted_text
|
98 |
|
99 |
def _return_yt_html_embed(yt_url):
|
|
|
130 |
|
131 |
with demo:
|
132 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
gr.HTML("<img src='file/Logo_2.png'>")
|
134 |
with gr.Column(scale=8):
|
135 |
# Use Markdown for title and description
|