AngelinaZanardi commited on
Commit
3b5fe9f
·
verified ·
1 Parent(s): ae6cc11

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -5
app.py CHANGED
@@ -19,8 +19,6 @@ import yt_dlp # Added import for yt-dlp
19
  MODEL_NAME = "NbAiLab/nb-whisper-large"
20
  lang = "no"
21
 
22
- logo_path = "/home/angelina/Nedlastinger/Screenshot 2024-10-10 at 13-30-13 Nasjonalbiblioteket — Melkeveien designkontor.png"
23
-
24
  share = (os.environ.get("SHARE", "False")[0].lower() in "ty1") or None
25
  auth_token = os.environ.get("AUTH_TOKEN") or True
26
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
@@ -64,7 +62,7 @@ def transcribe(file, return_timestamps=False):
64
  line = f"[{start_time} -> {end_time}] {chunk['text']}"
65
  text.append(line)
66
  formatted_text = "\n".join(text)
67
- formatted_text += "\n\nTranskribert med NB-Whisper demo"
68
  return formatted_text
69
 
70
  def _return_yt_html_embed(yt_url):
@@ -100,7 +98,7 @@ def yt_transcribe(yt_url, return_timestamps=False):
100
  demo = gr.Blocks()
101
 
102
  with demo:
103
- gr.Image(value=logo_path, label="Nasjonalbibliotek Logo", elem_id="logo") # No tool parameter for static display
104
  mf_transcribe = gr.Interface(
105
  fn=transcribe,
106
  inputs=[
@@ -136,4 +134,4 @@ with demo:
136
  # )
137
 
138
  # Start demoen uten faner
139
- demo.launch(share=share).queue()
 
19
  MODEL_NAME = "NbAiLab/nb-whisper-large"
20
  lang = "no"
21
 
 
 
22
  share = (os.environ.get("SHARE", "False")[0].lower() in "ty1") or None
23
  auth_token = os.environ.get("AUTH_TOKEN") or True
24
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 
62
  line = f"[{start_time} -> {end_time}] {chunk['text']}"
63
  text.append(line)
64
  formatted_text = "\n".join(text)
65
+ formatted_text += "\n\n<i>Transkribert med NB-Whisper demo</i>"
66
  return formatted_text
67
 
68
  def _return_yt_html_embed(yt_url):
 
98
  demo = gr.Blocks()
99
 
100
  with demo:
101
+ gr.HTML('<center><img src="Logo.png" alt="Nasjonalbiblioteket Logo" width="300"></center>')
102
  mf_transcribe = gr.Interface(
103
  fn=transcribe,
104
  inputs=[
 
134
  # )
135
 
136
  # Start demoen uten faner
137
+ demo.launch(share=share, show_api=False, show_tips=False).queue()