Spaces:
Running
on
T4
Running
on
T4
update test
Browse files
app.py
CHANGED
@@ -4,7 +4,6 @@ import os
|
|
4 |
import torch
|
5 |
|
6 |
import gradio as gr
|
7 |
-
import pytube as pt
|
8 |
import spaces
|
9 |
from transformers import AutoFeatureExtractor, AutoTokenizer, WhisperForConditionalGeneration, WhisperProcessor, pipeline
|
10 |
from huggingface_hub import model_info
|
@@ -14,6 +13,7 @@ try:
|
|
14 |
except ImportError:
|
15 |
FLASH_ATTENTION = False
|
16 |
|
|
|
17 |
|
18 |
MODEL_NAME = "NbAiLab/nb-whisper-large"
|
19 |
lang = "no"
|
@@ -25,16 +25,9 @@ print(f"Using device: {device}")
|
|
25 |
|
26 |
@spaces.GPU(duration=60 * 2)
|
27 |
def pipe(file, return_timestamps=False):
|
28 |
-
# model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
29 |
-
# model.to(device)
|
30 |
-
# processor = WhisperProcessor.from_pretrained(MODEL_NAME)
|
31 |
-
# model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
|
32 |
-
# model.generation_config.cache_implementation = "static"
|
33 |
asr = pipeline(
|
34 |
task="automatic-speech-recognition",
|
35 |
model=MODEL_NAME,
|
36 |
-
# tokenizer=AutoTokenizer.from_pretrained(MODEL_NAME),
|
37 |
-
# feature_extractor=AutoFeatureExtractor.from_pretrained(MODEL_NAME),
|
38 |
chunk_length_s=30,
|
39 |
device=device,
|
40 |
token=auth_token,
|
@@ -46,7 +39,6 @@ def pipe(file, return_timestamps=False):
|
|
46 |
task="transcribe",
|
47 |
no_timestamps=not return_timestamps,
|
48 |
)
|
49 |
-
# asr.model.config.no_timestamps_token_id = asr.tokenizer.encode("<|notimestamps|>", add_special_tokens=False)[0]
|
50 |
return asr(file, return_timestamps=return_timestamps, batch_size=24)
|
51 |
|
52 |
def transcribe(file, return_timestamps=False):
|
@@ -63,7 +55,6 @@ def transcribe(file, return_timestamps=False):
|
|
63 |
text = "\n".join(text)
|
64 |
return text
|
65 |
|
66 |
-
|
67 |
def _return_yt_html_embed(yt_url):
|
68 |
video_id = yt_url.split("?v=")[-1]
|
69 |
HTML_str = (
|
@@ -72,18 +63,26 @@ def _return_yt_html_embed(yt_url):
|
|
72 |
)
|
73 |
return HTML_str
|
74 |
|
75 |
-
|
76 |
def yt_transcribe(yt_url, return_timestamps=False):
|
77 |
-
yt = pt.YouTube(yt_url)
|
78 |
html_embed_str = _return_yt_html_embed(yt_url)
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
text = transcribe("audio.mp3", return_timestamps=return_timestamps)
|
83 |
|
84 |
return html_embed_str, text
|
85 |
|
86 |
-
|
87 |
demo = gr.Blocks()
|
88 |
|
89 |
mf_transcribe = gr.Interface(
|
@@ -102,7 +101,7 @@ mf_transcribe = gr.Interface(
|
|
102 |
allow_flagging="never",
|
103 |
)
|
104 |
|
105 |
-
|
106 |
fn=yt_transcribe,
|
107 |
inputs=[
|
108 |
gr.components.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
@@ -120,12 +119,9 @@ yt_transcribe = gr.Interface(
|
|
120 |
)
|
121 |
|
122 |
with demo:
|
123 |
-
gr.TabbedInterface(
|
124 |
-
mf_transcribe,
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
])
|
130 |
-
|
131 |
-
demo.launch(share=share).queue()
|
|
|
4 |
import torch
|
5 |
|
6 |
import gradio as gr
|
|
|
7 |
import spaces
|
8 |
from transformers import AutoFeatureExtractor, AutoTokenizer, WhisperForConditionalGeneration, WhisperProcessor, pipeline
|
9 |
from huggingface_hub import model_info
|
|
|
13 |
except ImportError:
|
14 |
FLASH_ATTENTION = False
|
15 |
|
16 |
+
import yt_dlp # Added import for yt-dlp
|
17 |
|
18 |
MODEL_NAME = "NbAiLab/nb-whisper-large"
|
19 |
lang = "no"
|
|
|
25 |
|
26 |
@spaces.GPU(duration=60 * 2)
|
27 |
def pipe(file, return_timestamps=False):
|
|
|
|
|
|
|
|
|
|
|
28 |
asr = pipeline(
|
29 |
task="automatic-speech-recognition",
|
30 |
model=MODEL_NAME,
|
|
|
|
|
31 |
chunk_length_s=30,
|
32 |
device=device,
|
33 |
token=auth_token,
|
|
|
39 |
task="transcribe",
|
40 |
no_timestamps=not return_timestamps,
|
41 |
)
|
|
|
42 |
return asr(file, return_timestamps=return_timestamps, batch_size=24)
|
43 |
|
44 |
def transcribe(file, return_timestamps=False):
|
|
|
55 |
text = "\n".join(text)
|
56 |
return text
|
57 |
|
|
|
58 |
def _return_yt_html_embed(yt_url):
|
59 |
video_id = yt_url.split("?v=")[-1]
|
60 |
HTML_str = (
|
|
|
63 |
)
|
64 |
return HTML_str
|
65 |
|
|
|
66 |
def yt_transcribe(yt_url, return_timestamps=False):
|
|
|
67 |
html_embed_str = _return_yt_html_embed(yt_url)
|
68 |
+
|
69 |
+
ydl_opts = {
|
70 |
+
'format': 'bestaudio/best',
|
71 |
+
'outtmpl': 'audio.%(ext)s',
|
72 |
+
'postprocessors': [{
|
73 |
+
'key': 'FFmpegExtractAudio',
|
74 |
+
'preferredcodec': 'mp3',
|
75 |
+
'preferredquality': '192',
|
76 |
+
}],
|
77 |
+
'quiet': True,
|
78 |
+
}
|
79 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
80 |
+
ydl.download([yt_url])
|
81 |
|
82 |
text = transcribe("audio.mp3", return_timestamps=return_timestamps)
|
83 |
|
84 |
return html_embed_str, text
|
85 |
|
|
|
86 |
demo = gr.Blocks()
|
87 |
|
88 |
mf_transcribe = gr.Interface(
|
|
|
101 |
allow_flagging="never",
|
102 |
)
|
103 |
|
104 |
+
yt_transcribe_interface = gr.Interface(
|
105 |
fn=yt_transcribe,
|
106 |
inputs=[
|
107 |
gr.components.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
|
|
119 |
)
|
120 |
|
121 |
with demo:
|
122 |
+
gr.TabbedInterface(
|
123 |
+
[mf_transcribe, yt_transcribe_interface],
|
124 |
+
["Transcribe Audio", "Transcribe YouTube"]
|
125 |
+
)
|
126 |
+
|
127 |
+
demo.launch(share=share).queue()
|
|
|
|
|
|