Spaces:
Running
on
T4
Running
on
T4
update test
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import time
|
|
2 |
import os
|
3 |
|
4 |
import torch
|
5 |
-
|
6 |
import gradio as gr
|
7 |
import pytube as pt
|
8 |
import spaces
|
@@ -25,9 +25,16 @@ print(f"Using device: {device}")
|
|
25 |
|
26 |
@spaces.GPU(duration=60 * 2)
|
27 |
def pipe(file, return_timestamps=False):
|
|
|
|
|
|
|
|
|
|
|
28 |
asr = pipeline(
|
29 |
task="automatic-speech-recognition",
|
30 |
model=MODEL_NAME,
|
|
|
|
|
31 |
chunk_length_s=30,
|
32 |
device=device,
|
33 |
token=auth_token,
|
@@ -39,6 +46,7 @@ def pipe(file, return_timestamps=False):
|
|
39 |
task="transcribe",
|
40 |
no_timestamps=not return_timestamps,
|
41 |
)
|
|
|
42 |
return asr(file, return_timestamps=return_timestamps, batch_size=24)
|
43 |
|
44 |
def transcribe(file, return_timestamps=False):
|
@@ -65,18 +73,14 @@ def _return_yt_html_embed(yt_url):
|
|
65 |
return HTML_str
|
66 |
|
67 |
|
68 |
-
|
69 |
-
|
70 |
html_embed_str = _return_yt_html_embed(yt_url)
|
|
|
|
|
71 |
|
72 |
-
|
73 |
-
filepath = os.path.join(tmpdirname, "audio.mp3")
|
74 |
-
download_yt_audio(yt_url, filepath)
|
75 |
-
|
76 |
-
inputs = ffmpeg_read(filepath, pipe.feature_extractor.sampling_rate)
|
77 |
-
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
78 |
|
79 |
-
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
80 |
return html_embed_str, text
|
81 |
|
82 |
|
@@ -85,11 +89,11 @@ demo = gr.Blocks()
|
|
85 |
mf_transcribe = gr.Interface(
|
86 |
fn=transcribe,
|
87 |
inputs=[
|
88 |
-
gr.Audio(sources=
|
89 |
-
gr.
|
90 |
],
|
91 |
outputs="text",
|
92 |
-
title="NB-Whisper
|
93 |
description=(
|
94 |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned"
|
95 |
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
@@ -101,27 +105,27 @@ mf_transcribe = gr.Interface(
|
|
101 |
yt_transcribe = gr.Interface(
|
102 |
fn=yt_transcribe,
|
103 |
inputs=[
|
104 |
-
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
105 |
-
gr.
|
106 |
],
|
|
|
107 |
outputs=["html", "text"],
|
108 |
title="Whisper Demo: Transcribe YouTube",
|
109 |
description=(
|
110 |
"Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:"
|
111 |
-
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe
|
112 |
" arbitrary length."
|
113 |
),
|
114 |
allow_flagging="never",
|
115 |
)
|
116 |
|
117 |
-
|
118 |
with demo:
|
119 |
gr.TabbedInterface([
|
120 |
mf_transcribe,
|
121 |
-
yt_transcribe
|
122 |
], [
|
123 |
-
"
|
124 |
-
"
|
125 |
])
|
126 |
|
127 |
demo.launch(share=share).queue()
|
|
|
2 |
import os
|
3 |
|
4 |
import torch
|
5 |
+
|
6 |
import gradio as gr
|
7 |
import pytube as pt
|
8 |
import spaces
|
|
|
25 |
|
26 |
@spaces.GPU(duration=60 * 2)
|
27 |
def pipe(file, return_timestamps=False):
|
28 |
+
# model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
29 |
+
# model.to(device)
|
30 |
+
# processor = WhisperProcessor.from_pretrained(MODEL_NAME)
|
31 |
+
# model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
|
32 |
+
# model.generation_config.cache_implementation = "static"
|
33 |
asr = pipeline(
|
34 |
task="automatic-speech-recognition",
|
35 |
model=MODEL_NAME,
|
36 |
+
# tokenizer=AutoTokenizer.from_pretrained(MODEL_NAME),
|
37 |
+
# feature_extractor=AutoFeatureExtractor.from_pretrained(MODEL_NAME),
|
38 |
chunk_length_s=30,
|
39 |
device=device,
|
40 |
token=auth_token,
|
|
|
46 |
task="transcribe",
|
47 |
no_timestamps=not return_timestamps,
|
48 |
)
|
49 |
+
# asr.model.config.no_timestamps_token_id = asr.tokenizer.encode("<|notimestamps|>", add_special_tokens=False)[0]
|
50 |
return asr(file, return_timestamps=return_timestamps, batch_size=24)
|
51 |
|
52 |
def transcribe(file, return_timestamps=False):
|
|
|
73 |
return HTML_str
|
74 |
|
75 |
|
76 |
+
def yt_transcribe(yt_url, return_timestamps=False):
|
77 |
+
yt = pt.YouTube(yt_url)
|
78 |
html_embed_str = _return_yt_html_embed(yt_url)
|
79 |
+
stream = yt.streams.filter(only_audio=True)[0]
|
80 |
+
stream.download(filename="audio.mp3")
|
81 |
|
82 |
+
text = transcribe("audio.mp3", return_timestamps=return_timestamps)
|
|
|
|
|
|
|
|
|
|
|
83 |
|
|
|
84 |
return html_embed_str, text
|
85 |
|
86 |
|
|
|
89 |
mf_transcribe = gr.Interface(
|
90 |
fn=transcribe,
|
91 |
inputs=[
|
92 |
+
gr.components.Audio(sources=['upload', 'microphone'], type="filepath"),
|
93 |
+
gr.components.Checkbox(label="Return timestamps"),
|
94 |
],
|
95 |
outputs="text",
|
96 |
+
title="NB-Whisper",
|
97 |
description=(
|
98 |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned"
|
99 |
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
|
|
105 |
yt_transcribe = gr.Interface(
|
106 |
fn=yt_transcribe,
|
107 |
inputs=[
|
108 |
+
gr.components.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
109 |
+
gr.components.Checkbox(label="Return timestamps"),
|
110 |
],
|
111 |
+
examples=[["https://www.youtube.com/watch?v=mukeSSa5GKo"]],
|
112 |
outputs=["html", "text"],
|
113 |
title="Whisper Demo: Transcribe YouTube",
|
114 |
description=(
|
115 |
"Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:"
|
116 |
+
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of"
|
117 |
" arbitrary length."
|
118 |
),
|
119 |
allow_flagging="never",
|
120 |
)
|
121 |
|
|
|
122 |
with demo:
|
123 |
gr.TabbedInterface([
|
124 |
mf_transcribe,
|
125 |
+
# yt_transcribe
|
126 |
], [
|
127 |
+
"Transcribe Audio",
|
128 |
+
# "Transcribe YouTube"
|
129 |
])
|
130 |
|
131 |
demo.launch(share=share).queue()
|