Spaces:
Running
Running
Neanderthal
commited on
Commit
·
d8a57e2
1
Parent(s):
363e2e7
Create LunarLander-v2.py
Browse files- LunarLander-v2.py +26 -0
LunarLander-v2.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gym
|
2 |
+
|
3 |
+
from huggingface_sb3 import load_from_hub
|
4 |
+
from stable_baselines3 import PPO
|
5 |
+
from stable_baselines3.common.evaluation import evaluate_policy
|
6 |
+
|
7 |
+
# Retrieve the model from the hub
|
8 |
+
## repo_id = id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name})
|
9 |
+
## filename = name of the model zip file from the repository
|
10 |
+
checkpoint = load_from_hub(repo_id="ThomasSimonini/ppo-LunarLander-v2", filename="ppo-LunarLander-v2.zip")
|
11 |
+
model = PPO.load(checkpoint)
|
12 |
+
|
13 |
+
# Evaluate the agent
|
14 |
+
eval_env = gym.make('LunarLander-v2')
|
15 |
+
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
|
16 |
+
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
|
17 |
+
|
18 |
+
# Watch the agent play
|
19 |
+
obs = eval_env.reset()
|
20 |
+
for i in range(1000):
|
21 |
+
action, _state = model.predict(obs)
|
22 |
+
obs, reward, done, info = eval_env.step(action)
|
23 |
+
eval_env.render()
|
24 |
+
if done:
|
25 |
+
obs = eval_env.reset()
|
26 |
+
eval_env.close()
|