Spaces:
Sleeping
Sleeping
add summarizer from russian text
Browse files- sumar_hf_space.py +22 -0
sumar_hf_space.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import GPT2Tokenizer, T5ForConditionalGeneration
|
3 |
+
|
4 |
+
|
5 |
+
tokenizer = GPT2Tokenizer.from_pretrained('RussianNLP/FRED-T5-Summarizer', eos_token='</s>')
|
6 |
+
model = T5ForConditionalGeneration.from_pretrained('RussianNLP/FRED-T5-Summarizer')
|
7 |
+
device = 'cuda'
|
8 |
+
model.to(device)
|
9 |
+
|
10 |
+
input_text = "<LM> 小芯泻褉邪褌懈 褌械泻褋褌.\n "
|
11 |
+
|
12 |
+
def make_summarization(user_text):
|
13 |
+
processing_text = input_text + user_text
|
14 |
+
input_ids = torch.tensor([tokenizer.encode(processing_text)]).to(device)
|
15 |
+
outputs = model.generate(input_ids, eos_token_id=tokenizer.eos_token_id,
|
16 |
+
num_beams=3,
|
17 |
+
min_new_tokens=17,
|
18 |
+
max_new_tokens=200,
|
19 |
+
do_sample=True,
|
20 |
+
no_repeat_ngram_size=4,
|
21 |
+
top_p=0.9)
|
22 |
+
return tokenizer.decode(outputs[0][1:])
|