Spaces:
Sleeping
Sleeping
try from the saved model
Browse files
app.py
CHANGED
@@ -1,8 +1,79 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
|
3 |
-
def
|
4 |
-
|
5 |
-
|
|
|
|
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import copy
|
4 |
+
import numpy as np
|
5 |
|
6 |
+
def generate_from_saved(seed_text):
|
7 |
+
# add the start generation of the lukashenko speech from the simple seed
|
8 |
+
# seed_text = 'я не глядя поддержу'
|
9 |
+
weights_path = 'results/weights_lukash.h5'
|
10 |
+
model_path = 'results/Lukashenko_tarakan'
|
11 |
|
12 |
+
model = tf.keras.models.load_model(model_path)
|
13 |
+
model.load_weights(weights_path)
|
14 |
+
# Show the Model summary
|
15 |
+
model.summary()
|
16 |
+
|
17 |
+
with open('data/source_text_lukash.txt', 'r') as source_text_file:
|
18 |
+
data = source_text_file.read().splitlines()
|
19 |
+
|
20 |
+
tmp_data = copy.deepcopy(data)
|
21 |
+
sent_length = 0
|
22 |
+
for idx, line in enumerate(data):
|
23 |
+
if len(line) < 5:
|
24 |
+
tmp_data.pop(idx)
|
25 |
+
else:
|
26 |
+
sent_length += len(line.split())
|
27 |
+
data = tmp_data
|
28 |
+
lstm_length = int(sent_length / len(data))
|
29 |
+
|
30 |
+
token = tf.keras.preprocessing.text.Tokenizer()
|
31 |
+
token.fit_on_texts(data)
|
32 |
+
encoded_text = token.texts_to_sequences(data)
|
33 |
+
# Vocabular size
|
34 |
+
vocab_size = len(token.word_counts) + 1
|
35 |
+
|
36 |
+
datalist = []
|
37 |
+
for d in encoded_text:
|
38 |
+
if len(d) > 1:
|
39 |
+
for i in range(2, len(d)):
|
40 |
+
datalist.append(d[:i])
|
41 |
+
|
42 |
+
max_length = 20
|
43 |
+
sequences = tf.keras.preprocessing.sequence.pad_sequences(datalist, maxlen=max_length, padding='pre')
|
44 |
+
|
45 |
+
# X - input data, y - target data
|
46 |
+
X = sequences[:, :-1]
|
47 |
+
y = sequences[:, -1]
|
48 |
+
|
49 |
+
y = tf.keras.utils.to_categorical(y, num_classes=vocab_size)
|
50 |
+
seq_length = X.shape[1]
|
51 |
+
print(f"Sequence length: {seq_length}")
|
52 |
+
|
53 |
+
generated_text = ''
|
54 |
+
number_lines = 3
|
55 |
+
for i in range(number_lines):
|
56 |
+
text_word_list = []
|
57 |
+
for _ in range(lstm_length * 2):
|
58 |
+
encoded = token.texts_to_sequences([seed_text])
|
59 |
+
encoded = tf.keras.preprocessing.sequence.pad_sequences(encoded, maxlen=seq_length, padding='pre')
|
60 |
+
|
61 |
+
y_pred = np.argmax(model.predict(encoded), axis=-1)
|
62 |
+
|
63 |
+
predicted_word = ""
|
64 |
+
for word, index in token.word_index.items():
|
65 |
+
if index == y_pred:
|
66 |
+
predicted_word = word
|
67 |
+
break
|
68 |
+
|
69 |
+
seed_text = seed_text + ' ' + predicted_word
|
70 |
+
text_word_list.append(predicted_word)
|
71 |
+
|
72 |
+
seed_text = text_word_list [-1]
|
73 |
+
generated_text = ' '.join(text_word_list)
|
74 |
+
generated_text += '\n'
|
75 |
+
|
76 |
+
return generated_text
|
77 |
+
|
78 |
+
demo = gr.Interface(fn=generate_from_saved, inputs="text", outputs="text")
|
79 |
demo.launch()
|