import gradio as gr import torch from transformers import GPT2Tokenizer, T5ForConditionalGeneration tokenizer = GPT2Tokenizer.from_pretrained('RussianNLP/FRED-T5-Summarizer', eos_token='') model = T5ForConditionalGeneration.from_pretrained('RussianNLP/FRED-T5-Summarizer') device = 'cpu' model.to(device) input_text = " Сократи текст.\n " def make_summarization(user_text): processing_text = input_text + user_text input_ids = torch.tensor([tokenizer.encode(processing_text)]).to(device) outputs = model.generate(input_ids, eos_token_id=tokenizer.eos_token_id, num_beams=3, min_new_tokens=17, max_new_tokens=200, do_sample=True, no_repeat_ngram_size=4, top_p=0.9) return tokenizer.decode(outputs[0][1:]) demo = gr.Interface(fn=make_summarization, inputs="text", outputs="text") demo.launch(share=True)