Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,47 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
-
from utils import *
|
4 |
-
|
5 |
-
# Assuming data is loaded and matrices are prepared as discussed
|
6 |
-
def load_data():
|
7 |
-
ratings = pd.read_csv('./
|
8 |
-
books = pd.read_csv('./
|
9 |
-
# book_titles=pd.read_csv('./data/book_titles.csv', index_col=0)
|
10 |
-
# book_titles = book_titles.reset_index()
|
11 |
-
|
12 |
-
# Merge data
|
13 |
-
ratings = ratings.merge(books, on='book_id')
|
14 |
-
book_titles = dict(zip(ratings['book_id'], ratings['title_x']))
|
15 |
-
return ratings, books,book_titles
|
16 |
-
|
17 |
-
def initialize_session_state():
|
18 |
-
if "ratings" not in st.session_state:
|
19 |
-
st.session_state.ratings, st.session_state.books, st.session_state.book_titles = load_data()
|
20 |
-
st.session_state.X, st.session_state.user_mapper, st.session_state.book_mapper, st.session_state.user_inv_mapper, st.session_state.book_inv_mapper = create_matrix(st.session_state.ratings)
|
21 |
-
st.session_state.book_id_mapping = pd.Series( st.session_state.books.book_id.values, index= st.session_state.books.title).to_dict()
|
22 |
-
|
23 |
-
initialize_session_state()
|
24 |
-
# Streamlit interface for book recommendation
|
25 |
-
st.title('Book Recommender System')
|
26 |
-
|
27 |
-
# User inputs
|
28 |
-
title_input = st.selectbox('Select or type a book title', st.session_state.books['title'].unique())
|
29 |
-
k_input = st.number_input('How many recommendations do you want?', min_value=1, max_value=20, value=5)
|
30 |
-
|
31 |
-
if st.button('Find Similar Books'):
|
32 |
-
|
33 |
-
if title_input in st.session_state.book_id_mapping:
|
34 |
-
book_id = st.session_state.book_id_mapping[title_input]
|
35 |
-
distances, similar_ids = find_similar_books(book_id, st.session_state.X, k=k_input,book_mapper= st.session_state.book_mapper,book_inv_mapper= st.session_state.book_inv_mapper)
|
36 |
-
similar_books = pd.DataFrame({
|
37 |
-
'Book Title': [ st.session_state.book_titles[ids] for ids in similar_ids],
|
38 |
-
'Distance': distances[0][1:]
|
39 |
-
})
|
40 |
-
|
41 |
-
st.write(f"Books similar to {title_input}:")
|
42 |
-
st.dataframe(similar_books.sort_values(by='Distance', ascending=True))
|
43 |
-
else:
|
44 |
-
st.error("Book title not found. Please check the spelling or try another title.")
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from utils import *
|
4 |
+
|
5 |
+
# Assuming data is loaded and matrices are prepared as discussed
|
6 |
+
def load_data():
|
7 |
+
ratings = pd.read_csv('./collaborative_books_df.csv', index_col=0)
|
8 |
+
books = pd.read_csv('./collaborative_book_metadata.csv', index_col=0)
|
9 |
+
# book_titles=pd.read_csv('./data/book_titles.csv', index_col=0)
|
10 |
+
# book_titles = book_titles.reset_index()
|
11 |
+
|
12 |
+
# Merge data
|
13 |
+
ratings = ratings.merge(books, on='book_id')
|
14 |
+
book_titles = dict(zip(ratings['book_id'], ratings['title_x']))
|
15 |
+
return ratings, books,book_titles
|
16 |
+
|
17 |
+
def initialize_session_state():
|
18 |
+
if "ratings" not in st.session_state:
|
19 |
+
st.session_state.ratings, st.session_state.books, st.session_state.book_titles = load_data()
|
20 |
+
st.session_state.X, st.session_state.user_mapper, st.session_state.book_mapper, st.session_state.user_inv_mapper, st.session_state.book_inv_mapper = create_matrix(st.session_state.ratings)
|
21 |
+
st.session_state.book_id_mapping = pd.Series( st.session_state.books.book_id.values, index= st.session_state.books.title).to_dict()
|
22 |
+
|
23 |
+
initialize_session_state()
|
24 |
+
# Streamlit interface for book recommendation
|
25 |
+
st.title('Book Recommender System')
|
26 |
+
|
27 |
+
# User inputs
|
28 |
+
title_input = st.selectbox('Select or type a book title', st.session_state.books['title'].unique())
|
29 |
+
k_input = st.number_input('How many recommendations do you want?', min_value=1, max_value=20, value=5)
|
30 |
+
|
31 |
+
if st.button('Find Similar Books'):
|
32 |
+
|
33 |
+
if title_input in st.session_state.book_id_mapping:
|
34 |
+
book_id = st.session_state.book_id_mapping[title_input]
|
35 |
+
distances, similar_ids = find_similar_books(book_id, st.session_state.X, k=k_input,book_mapper= st.session_state.book_mapper,book_inv_mapper= st.session_state.book_inv_mapper)
|
36 |
+
similar_books = pd.DataFrame({
|
37 |
+
'Book Title': [ st.session_state.book_titles[ids] for ids in similar_ids],
|
38 |
+
'Distance': distances[0][1:]
|
39 |
+
})
|
40 |
+
|
41 |
+
st.write(f"Books similar to {title_input}:")
|
42 |
+
st.dataframe(similar_books.sort_values(by='Distance', ascending=True))
|
43 |
+
else:
|
44 |
+
st.error("Book title not found. Please check the spelling or try another title.")
|
45 |
+
|
46 |
+
|
47 |
+
|