Spaces:
Runtime error
Runtime error
File size: 5,348 Bytes
78d298c 6dae0f8 78d298c 67eb48f 2591fbb 9ecc265 78d298c 4a327be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import os
from threading import Thread
MODEL_ID = "./coin_model_funtuned"
TITLE = f'<br><center>π Coin Generative Recognition</a></center>'
DESCRIPTION = f"""
<center>
<p>
A Space for Vision/Multimodal
<br>
<br>
β¨ Tips: Send messages or upload multiple IMAGES at a time.
<br>
β¨ Tips: Please increase MAX LENGTH when dealing with files.
<br>
π€ Supported Format: png, jpg, webp
<br>
πββοΈ May be rebuilding from time to time.
</p>
</center>"""
CSS = """
h1 {
text-align: center;
display: block;
}
img {
max-width: 100%; /* Make sure images are not wider than their container */
height: auto; /* Maintain aspect ratio */
max-height: 300px; /* Limit the height of images */
}
"""
# Load model directly
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
).to(0)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
model.eval()
def merge_images(paths):
images = [Image.open(path).convert('RGB') for path in paths]
widths, heights = zip(*(i.size for i in images))
total_width = sum(widths)
max_height = max(heights)
new_im = Image.new('RGB', (total_width, max_height))
x_offset = 0
for im in images:
new_im.paste(im, (x_offset,0))
x_offset += im.width
return new_im
def mode_load(paths):
if all(path.lower().endswith(('png', 'jpg', 'jpeg', 'webp')) for path in paths):
content = merge_images(paths)
choice = "image"
return choice, content
else:
raise gr.Error("Unsupported file types. Please upload only images.")
@spaces.GPU()
def stream_chat(message, history: list, temperature: float, max_length: int, top_p: float, top_k: int, penalty: float):
conversation = []
if message["files"]:
choice, contents = mode_load(message["files"])
conversation.append({"role": "user", "image": contents, "content": message['text']})
elif message["files"] and len(message["files"]) == 1:
content = Image.open( message["files"][-1]).convert('RGB')
choice = "image"
conversation.append({"role": "user", "image": content, "content": message['text']})
else:
raise gr.Error("Please upload one or more images.")
input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
max_length=max_length,
streamer=streamer,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=penalty,
eos_token_id=[151329, 151336, 151338],
)
gen_kwargs = {**input_ids, **generate_kwargs}
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=gen_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
chatbot = gr.Chatbot(label="Chatbox", height=600, placeholder=DESCRIPTION)
chat_input = gr.MultimodalTextbox(
interactive=True,
placeholder="Enter message or upload images...",
show_label=False,
file_count="multiple",
)
EXAMPLES = [
[{"text": "Give me Country,Denomination andΒ year as json format.", "files": ["./135_back.jpg", "./135_front.jpg"]}],
[{"text": "Give me Country,Denomination andΒ year as json format.", "files": ["./141_back.jpg","./141_front.jpg"]}]
]
with gr.Blocks(css=CSS, theme="soft", fill_height=True) as demo:
gr.HTML(TITLE)
gr.ChatInterface(
fn=stream_chat,
multimodal=True,
textbox=chat_input,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="βοΈ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="Temperature",
render=False,
),
gr.Slider(
minimum=1024,
maximum=8192,
step=1,
value=4096,
label="Max Length",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=10,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0,
label="Repetition penalty",
render=False,
),
],
),
gr.Examples(EXAMPLES, [chat_input])
if __name__ == "__main__":
demo.queue(api_open=False).launch(show_api=False, share=False) |