Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,8 @@
|
|
1 |
from flask import Flask, request, jsonify
|
2 |
from transformers import pipeline
|
|
|
|
|
|
|
3 |
|
4 |
app = Flask(__name__)
|
5 |
classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True)
|
@@ -17,3 +20,27 @@ def classify():
|
|
17 |
|
18 |
except Exception as e:
|
19 |
return jsonify({"error": str(e)}), 500
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from flask import Flask, request, jsonify
|
2 |
from transformers import pipeline
|
3 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
4 |
+
|
5 |
+
# Initialize the tokenizer and model
|
6 |
|
7 |
app = Flask(__name__)
|
8 |
classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True)
|
|
|
20 |
|
21 |
except Exception as e:
|
22 |
return jsonify({"error": str(e)}), 500
|
23 |
+
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER")
|
25 |
+
model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER")
|
26 |
+
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
|
27 |
+
@app.route('/ner', methods=['POST'])
|
28 |
+
def ner_endpoint():
|
29 |
+
try:
|
30 |
+
# Get text from request
|
31 |
+
data = request.get_json()
|
32 |
+
text = data.get("text", "")
|
33 |
+
|
34 |
+
# Perform NER
|
35 |
+
ner_results = nlp(text)
|
36 |
+
|
37 |
+
# Extract words and their corresponding entities
|
38 |
+
words_and_entities = [
|
39 |
+
{"word": result['word'], "entity": result['entity']}
|
40 |
+
for result in ner_results
|
41 |
+
]
|
42 |
+
|
43 |
+
# Return JSON response with the words and their entities
|
44 |
+
return jsonify({"entities": words_and_entities})
|
45 |
+
except Exception as e:
|
46 |
+
return jsonify({"error": str(e)}), 500
|