Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -20,50 +20,37 @@ ner_model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER
|
|
20 |
ner_pipeline = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer) # Renamed variable
|
21 |
|
22 |
|
23 |
-
def convert_audio(input_path, output_path):
|
24 |
-
try:
|
25 |
-
ffmpeg.input(input_path).output(output_path, acodec='pcm_s16le').run()
|
26 |
-
return True
|
27 |
-
except ffmpeg.Error as e:
|
28 |
-
print(f"FFmpeg error: {e.stderr.decode()}")
|
29 |
-
return False
|
30 |
-
|
31 |
@app.route('/transcribe', methods=['POST'])
|
32 |
def transcribe_audio():
|
|
|
33 |
if 'file' not in request.files:
|
34 |
return jsonify({'error': 'No file uploaded'}), 400
|
35 |
-
|
36 |
file = request.files['file']
|
37 |
-
|
|
|
38 |
if file.filename == '':
|
39 |
return jsonify({'error': 'No selected file'}), 400
|
40 |
-
|
41 |
-
if not allowed_file(file.filename):
|
42 |
-
return jsonify({'error': 'Unsupported file type'}), 400
|
43 |
|
44 |
try:
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
# Transcribe the converted audio
|
54 |
-
result = whisper_model.transcribe(converted_path)
|
55 |
transcription = result["text"]
|
56 |
-
|
57 |
-
# Clean up temporary
|
58 |
-
|
59 |
-
|
60 |
-
if os.path.exists(converted_path):
|
61 |
-
os.remove(converted_path)
|
62 |
-
|
63 |
return jsonify({'transcription': transcription})
|
64 |
-
|
65 |
except Exception as e:
|
66 |
return jsonify({'error': str(e)}), 500
|
|
|
|
|
67 |
|
68 |
@app.route('/classify', methods=['POST'])
|
69 |
def classify():
|
|
|
20 |
ner_pipeline = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer) # Renamed variable
|
21 |
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
@app.route('/transcribe', methods=['POST'])
|
24 |
def transcribe_audio():
|
25 |
+
# Check if a file was uploaded
|
26 |
if 'file' not in request.files:
|
27 |
return jsonify({'error': 'No file uploaded'}), 400
|
28 |
+
|
29 |
file = request.files['file']
|
30 |
+
|
31 |
+
# Check if the file is empty
|
32 |
if file.filename == '':
|
33 |
return jsonify({'error': 'No selected file'}), 400
|
|
|
|
|
|
|
34 |
|
35 |
try:
|
36 |
+
# Save the uploaded file to a temporary file
|
37 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_audio:
|
38 |
+
file.save(temp_audio)
|
39 |
+
temp_path = temp_audio.name
|
40 |
+
|
41 |
+
# Transcribe the audio using Whisper
|
42 |
+
result = whisper_model.transcribe(temp_path)
|
|
|
|
|
|
|
43 |
transcription = result["text"]
|
44 |
+
|
45 |
+
# Clean up the temporary file
|
46 |
+
os.remove(temp_path)
|
47 |
+
|
|
|
|
|
|
|
48 |
return jsonify({'transcription': transcription})
|
49 |
+
|
50 |
except Exception as e:
|
51 |
return jsonify({'error': str(e)}), 500
|
52 |
+
|
53 |
+
|
54 |
|
55 |
@app.route('/classify', methods=['POST'])
|
56 |
def classify():
|