Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,46 @@
|
|
1 |
from flask import Flask, request, jsonify
|
2 |
from transformers import pipeline
|
3 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
4 |
-
|
5 |
-
# Initialize the tokenizer and model
|
6 |
import whisper
|
7 |
import os
|
8 |
|
9 |
app = Flask(__name__)
|
10 |
|
|
|
|
|
11 |
|
|
|
|
|
12 |
|
13 |
-
#
|
14 |
-
|
|
|
|
|
15 |
|
16 |
def allowed_file(filename):
|
17 |
return '.' in filename and filename.rsplit('.', 1)[1].lower() in {'wav', 'mp3', 'ogg', 'flac', 'm4a'}
|
18 |
|
19 |
@app.route('/transcribe', methods=['POST'])
|
20 |
def transcribe_audio():
|
21 |
-
# Check if a file was uploaded
|
22 |
if 'file' not in request.files:
|
23 |
return jsonify({'error': 'No file uploaded'}), 400
|
24 |
|
25 |
file = request.files['file']
|
26 |
|
27 |
-
# Check if the file is empty
|
28 |
if file.filename == '':
|
29 |
return jsonify({'error': 'No selected file'}), 400
|
30 |
|
31 |
-
# Check allowed file types
|
32 |
if not allowed_file(file.filename):
|
33 |
return jsonify({'error': 'Unsupported file type'}), 400
|
34 |
|
35 |
try:
|
36 |
-
# Save the temporary file
|
37 |
temp_path = "temp_audio"
|
38 |
file.save(temp_path)
|
39 |
|
40 |
-
#
|
41 |
-
result =
|
42 |
transcription = result["text"]
|
43 |
|
44 |
-
# Clean up the temporary file
|
45 |
if os.path.exists(temp_path):
|
46 |
os.remove(temp_path)
|
47 |
|
@@ -49,7 +48,6 @@ def transcribe_audio():
|
|
49 |
|
50 |
except Exception as e:
|
51 |
return jsonify({'error': str(e)}), 500
|
52 |
-
classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True)
|
53 |
|
54 |
@app.route('/classify', methods=['POST'])
|
55 |
def classify():
|
@@ -65,26 +63,23 @@ def classify():
|
|
65 |
except Exception as e:
|
66 |
return jsonify({"error": str(e)}), 500
|
67 |
|
68 |
-
tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER")
|
69 |
-
model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER")
|
70 |
-
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
|
71 |
@app.route('/ner', methods=['POST'])
|
72 |
def ner_endpoint():
|
73 |
try:
|
74 |
-
# Get text from request
|
75 |
data = request.get_json()
|
76 |
text = data.get("text", "")
|
77 |
|
78 |
-
#
|
79 |
-
ner_results =
|
80 |
|
81 |
-
# Extract words and their corresponding entities
|
82 |
words_and_entities = [
|
83 |
{"word": result['word'], "entity": result['entity']}
|
84 |
for result in ner_results
|
85 |
]
|
86 |
|
87 |
-
# Return JSON response with the words and their entities
|
88 |
return jsonify({"entities": words_and_entities})
|
89 |
except Exception as e:
|
90 |
return jsonify({"error": str(e)}), 500
|
|
|
|
|
|
|
|
1 |
from flask import Flask, request, jsonify
|
2 |
from transformers import pipeline
|
3 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
|
|
|
|
4 |
import whisper
|
5 |
import os
|
6 |
|
7 |
app = Flask(__name__)
|
8 |
|
9 |
+
# Initialize Whisper model
|
10 |
+
whisper_model = whisper.load_model("small") # Renamed variable
|
11 |
|
12 |
+
# Initialize Emotion Classifier
|
13 |
+
classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True)
|
14 |
|
15 |
+
# Initialize NER pipeline
|
16 |
+
ner_tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER")
|
17 |
+
ner_model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER") # Renamed variable
|
18 |
+
ner_pipeline = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer) # Renamed variable
|
19 |
|
20 |
def allowed_file(filename):
|
21 |
return '.' in filename and filename.rsplit('.', 1)[1].lower() in {'wav', 'mp3', 'ogg', 'flac', 'm4a'}
|
22 |
|
23 |
@app.route('/transcribe', methods=['POST'])
|
24 |
def transcribe_audio():
|
|
|
25 |
if 'file' not in request.files:
|
26 |
return jsonify({'error': 'No file uploaded'}), 400
|
27 |
|
28 |
file = request.files['file']
|
29 |
|
|
|
30 |
if file.filename == '':
|
31 |
return jsonify({'error': 'No selected file'}), 400
|
32 |
|
|
|
33 |
if not allowed_file(file.filename):
|
34 |
return jsonify({'error': 'Unsupported file type'}), 400
|
35 |
|
36 |
try:
|
|
|
37 |
temp_path = "temp_audio"
|
38 |
file.save(temp_path)
|
39 |
|
40 |
+
# Use the renamed whisper_model
|
41 |
+
result = whisper_model.transcribe(temp_path)
|
42 |
transcription = result["text"]
|
43 |
|
|
|
44 |
if os.path.exists(temp_path):
|
45 |
os.remove(temp_path)
|
46 |
|
|
|
48 |
|
49 |
except Exception as e:
|
50 |
return jsonify({'error': str(e)}), 500
|
|
|
51 |
|
52 |
@app.route('/classify', methods=['POST'])
|
53 |
def classify():
|
|
|
63 |
except Exception as e:
|
64 |
return jsonify({"error": str(e)}), 500
|
65 |
|
|
|
|
|
|
|
66 |
@app.route('/ner', methods=['POST'])
|
67 |
def ner_endpoint():
|
68 |
try:
|
|
|
69 |
data = request.get_json()
|
70 |
text = data.get("text", "")
|
71 |
|
72 |
+
# Use the renamed ner_pipeline
|
73 |
+
ner_results = ner_pipeline(text)
|
74 |
|
|
|
75 |
words_and_entities = [
|
76 |
{"word": result['word'], "entity": result['entity']}
|
77 |
for result in ner_results
|
78 |
]
|
79 |
|
|
|
80 |
return jsonify({"entities": words_and_entities})
|
81 |
except Exception as e:
|
82 |
return jsonify({"error": str(e)}), 500
|
83 |
+
|
84 |
+
if __name__ == '__main__':
|
85 |
+
app.run(host='0.0.0.0', port=5000, debug=True)
|