from flask import Flask, request, jsonify from transformers import pipeline from transformers import AutoTokenizer, AutoModelForTokenClassification import whisper import os import ffmpeg app = Flask(__name__) # Initialize Whisper model whisper_model = whisper.load_model("small") # Renamed variable # Initialize Emotion Classifier classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True) # Initialize NER pipeline ner_tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER") ner_model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER") # Renamed variable ner_pipeline = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer) # Renamed variable def convert_audio(input_path, output_path): try: ffmpeg.input(input_path).output(output_path, acodec='pcm_s16le').run() return True except ffmpeg.Error as e: print(f"FFmpeg error: {e.stderr.decode()}") return False @app.route('/transcribe', methods=['POST']) def transcribe_audio(): if 'file' not in request.files: return jsonify({'error': 'No file uploaded'}), 400 file = request.files['file'] if file.filename == '': return jsonify({'error': 'No selected file'}), 400 if not allowed_file(file.filename): return jsonify({'error': 'Unsupported file type'}), 400 try: temp_path = "temp_audio" file.save(temp_path) # Convert audio to a format Whisper can process converted_path = "converted_audio.wav" if not convert_audio(temp_path, converted_path): return jsonify({'error': 'Audio conversion failed'}), 500 # Transcribe the converted audio result = whisper_model.transcribe(converted_path) transcription = result["text"] # Clean up temporary files if os.path.exists(temp_path): os.remove(temp_path) if os.path.exists(converted_path): os.remove(converted_path) return jsonify({'transcription': transcription}) except Exception as e: return jsonify({'error': str(e)}), 500 @app.route('/classify', methods=['POST']) def classify(): try: data = request.get_json() if 'text' not in data: return jsonify({"error": "Missing 'text' field"}), 400 text = data['text'] result = classifier(text) return jsonify(result) except Exception as e: return jsonify({"error": str(e)}), 500 @app.route('/ner', methods=['POST']) def ner_endpoint(): try: data = request.get_json() text = data.get("text", "") # Use the renamed ner_pipeline ner_results = ner_pipeline(text) words_and_entities = [ {"word": result['word'], "entity": result['entity']} for result in ner_results ] return jsonify({"entities": words_and_entities}) except Exception as e: return jsonify({"error": str(e)}), 500