from flask import Flask, request, jsonify from transformers import pipeline from transformers import AutoTokenizer, AutoModelForTokenClassification # Initialize the tokenizer and model app = Flask(__name__) classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True) @app.route('/classify', methods=['POST']) def classify(): try: data = request.get_json() if 'text' not in data: return jsonify({"error": "Missing 'text' field"}), 400 text = data['text'] result = classifier(text) return jsonify(result) except Exception as e: return jsonify({"error": str(e)}), 500 tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER") model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER") nlp = pipeline("ner", model=model, tokenizer=tokenizer) @app.route('/ner', methods=['POST']) def ner_endpoint(): try: # Get text from request data = request.get_json() text = data.get("text", "") # Perform NER ner_results = nlp(text) # Extract words and their corresponding entities words_and_entities = [ {"word": result['word'], "entity": result['entity']} for result in ner_results ] # Return JSON response with the words and their entities return jsonify({"entities": words_and_entities}) except Exception as e: return jsonify({"error": str(e)}), 500