from flask import Flask, request, jsonify from transformers import pipeline from transformers import AutoTokenizer, AutoModelForTokenClassification import whisper import os import tempfile import io import torchaudio app = Flask(__name__) # Initialize Whisper model whisper_model = whisper.load_model("small") # Renamed variable # Initialize Emotion Classifier classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True) # Initialize NER pipeline ner_tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER") ner_model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER") # Renamed variable ner_pipeline = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer) # Renamed variable @app.route('/transcribe', methods=['POST']) def transcribe(): try: # Read raw bytes from the request audio_bytes = request.data if not audio_bytes: return jsonify({"error": "No audio data provided"}), 400 # Convert bytes to a file-like object audio_file = io.BytesIO(audio_bytes) # Load audio as a waveform using torchaudio waveform, sample_rate = torchaudio.load(audio_file) # Whisper expects a NumPy array, so we convert it audio_numpy = waveform.squeeze().numpy() # Transcribe the audio result = model.transcribe(audio_numpy) return jsonify({"text": result["text"]}) except Exception as e: print("Error:", str(e)) # Log error for debugging return jsonify({"error": "Internal Server Error", "details": str(e)}), 500 @app.route('/classify', methods=['POST']) def classify(): try: data = request.get_json() if 'text' not in data: return jsonify({"error": "Missing 'text' field"}), 400 text = data['text'] result = classifier(text) return jsonify(result) except Exception as e: return jsonify({"error": str(e)}), 500 @app.route('/ner', methods=['POST']) def ner_endpoint(): try: data = request.get_json() text = data.get("text", "") # Use the renamed ner_pipeline ner_results = ner_pipeline(text) words_and_entities = [ {"word": result['word'], "entity": result['entity']} for result in ner_results ] return jsonify({"entities": words_and_entities}) except Exception as e: return jsonify({"error": str(e)}), 500