Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,61 +1,61 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import albumentations as albu
|
3 |
-
from pylab import imshow
|
4 |
-
import numpy as np
|
5 |
-
import cv2
|
6 |
-
import torch
|
7 |
-
import albumentations as albu
|
8 |
-
from iglovikov_helper_functions.utils.image_utils import load_rgb, pad, unpad
|
9 |
-
from iglovikov_helper_functions.dl.pytorch.utils import tensor_from_rgb_image
|
10 |
-
from collections import namedtuple
|
11 |
-
from tempfile import NamedTemporaryFile
|
12 |
-
import os
|
13 |
-
from people_segmentation.pre_trained_models import create_model
|
14 |
-
model = create_model("Unet_2020-07-20")
|
15 |
-
model.eval()
|
16 |
-
# Define model
|
17 |
-
import matplotlib.pyplot as plt
|
18 |
-
from pylab import imshow
|
19 |
-
|
20 |
-
|
21 |
-
def segment_people(image):
|
22 |
-
transform = albu.Compose([albu.Normalize(p=1)], p=1)
|
23 |
-
padded_image, pads = pad(image, factor=32, border=cv2.BORDER_CONSTANT)
|
24 |
-
x = transform(image=padded_image)["image"]
|
25 |
-
x = torch.unsqueeze(tensor_from_rgb_image(x), 0)
|
26 |
-
with torch.no_grad():
|
27 |
-
prediction = model(x)[0][0]
|
28 |
-
|
29 |
-
mask = (prediction > 0).cpu().numpy().astype(np.uint8)
|
30 |
-
mask = unpad(mask, pads)
|
31 |
-
dst = cv2.addWeighted(image, 1, (cv2.cvtColor(mask, cv2.COLOR_GRAY2RGB) * (0, 255, 0)).astype(np.uint8), 0.5, 0)
|
32 |
-
|
33 |
-
return dst
|
34 |
-
|
35 |
-
|
36 |
-
# Create Gradio app
|
37 |
-
def gradio_segmentation(image_path):
|
38 |
-
|
39 |
-
image = load_rgb(image_path)
|
40 |
-
mask = segment_people(image)
|
41 |
-
return mask
|
42 |
-
|
43 |
-
examples = [
|
44 |
-
[ "
|
45 |
-
[ "69.jpg"],
|
46 |
-
[ "80.jpg"]
|
47 |
-
]
|
48 |
-
|
49 |
-
description = """
|
50 |
-
# People Segmentation
|
51 |
-
This application segments people from the input image. Upload an image to see the segmented output.
|
52 |
-
"""
|
53 |
-
|
54 |
-
gr.Interface(
|
55 |
-
fn=gradio_segmentation,
|
56 |
-
inputs=gr.Image(type="filepath"),
|
57 |
-
outputs=gr.Image(type="numpy"),
|
58 |
-
examples=examples,
|
59 |
-
title="People Segmentation",
|
60 |
-
description=description,
|
61 |
-
).launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import albumentations as albu
|
3 |
+
from pylab import imshow
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
+
import torch
|
7 |
+
import albumentations as albu
|
8 |
+
from iglovikov_helper_functions.utils.image_utils import load_rgb, pad, unpad
|
9 |
+
from iglovikov_helper_functions.dl.pytorch.utils import tensor_from_rgb_image
|
10 |
+
from collections import namedtuple
|
11 |
+
from tempfile import NamedTemporaryFile
|
12 |
+
import os
|
13 |
+
from people_segmentation.pre_trained_models import create_model
|
14 |
+
model = create_model("Unet_2020-07-20")
|
15 |
+
model.eval()
|
16 |
+
# Define model
|
17 |
+
import matplotlib.pyplot as plt
|
18 |
+
from pylab import imshow
|
19 |
+
|
20 |
+
|
21 |
+
def segment_people(image):
|
22 |
+
transform = albu.Compose([albu.Normalize(p=1)], p=1)
|
23 |
+
padded_image, pads = pad(image, factor=32, border=cv2.BORDER_CONSTANT)
|
24 |
+
x = transform(image=padded_image)["image"]
|
25 |
+
x = torch.unsqueeze(tensor_from_rgb_image(x), 0)
|
26 |
+
with torch.no_grad():
|
27 |
+
prediction = model(x)[0][0]
|
28 |
+
|
29 |
+
mask = (prediction > 0).cpu().numpy().astype(np.uint8)
|
30 |
+
mask = unpad(mask, pads)
|
31 |
+
dst = cv2.addWeighted(image, 1, (cv2.cvtColor(mask, cv2.COLOR_GRAY2RGB) * (0, 255, 0)).astype(np.uint8), 0.5, 0)
|
32 |
+
|
33 |
+
return dst
|
34 |
+
|
35 |
+
|
36 |
+
# Create Gradio app
|
37 |
+
def gradio_segmentation(image_path):
|
38 |
+
|
39 |
+
image = load_rgb(image_path)
|
40 |
+
mask = segment_people(image)
|
41 |
+
return mask
|
42 |
+
|
43 |
+
examples = [
|
44 |
+
[ "73.jpg"],
|
45 |
+
[ "69.jpg"],
|
46 |
+
[ "80.jpg"]
|
47 |
+
]
|
48 |
+
|
49 |
+
description = """
|
50 |
+
# People Segmentation
|
51 |
+
This application segments people from the input image. Upload an image to see the segmented output.
|
52 |
+
"""
|
53 |
+
|
54 |
+
gr.Interface(
|
55 |
+
fn=gradio_segmentation,
|
56 |
+
inputs=gr.Image(type="filepath"),
|
57 |
+
outputs=gr.Image(type="numpy"),
|
58 |
+
examples=examples,
|
59 |
+
title="People Segmentation",
|
60 |
+
description=description,
|
61 |
+
).launch()
|