Spaces:
Running
Running
File size: 15,372 Bytes
5af38ac a335361 5af38ac 3a55e0a a1ae797 326d072 3a55e0a 1c7cc8d 3a55e0a 326d072 a1ae797 26f42da 5af38ac 26f42da 5af38ac dbf5064 26f42da 5af38ac 26f42da 61b4ccb 26f42da dbf5064 ccb6cf3 dbf5064 a1ae797 6be9120 a1ae797 3a55e0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
from google import genai
from google.genai import types
#genai.configure(api_key="AIzaSyAP85jSUKncrIGOAhm3Gvo-TYra_e1wmEA")
import os
import pandas as pd
import io
import tempfile
from PyPDF2 import PdfReader
import re
import csv
from PIL import Image
import fitz # PyMuPDF
from PIL import Image
# def configure_gemini(api_key: str):
# """Configure Gemini API with the provided key"""
# genai.configure(api_key=api_key)
# def pdf_to_images(pdf_bytes: bytes) -> list:
# """Convert PDF bytes to list of PIL Images"""
# return convert_from_bytes(pdf_bytes)
def pdf_to_images(pdf_bytes: bytes) -> list[Image.Image]:
"""Convert PDF to PIL Images using PyMuPDF (no poppler needed)."""
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
images = []
for page in doc:
pix = page.get_pixmap()
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
images.append(img)
return images
def pdf_to_images(pdf_bytes: bytes) -> list[Image.Image]:
"""Convert PDF to PIL Images using PyMuPDF (no poppler needed)."""
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
images = []
for page in doc:
pix = page.get_pixmap()
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
images.append(img)
return images
def pil_image_to_bytes(pil_image: Image.Image) -> bytes:
"""Convert a PIL image to JPEG bytes."""
with io.BytesIO() as output:
pil_image.save(output, format="JPEG")
return output.getvalue()
def analyze_pdf_images_with_gemini(pdf_bytes):
question="""Can you let me know that signatures and initials are missing and if certain checkboxes are checked prompt me with a secondary question? and also determine seller 1 seller 2 buyer 1 buyer 2 ... , WITH MAXIMUM details like Signature line for ....
can we also add line item?
the last part would be remember certain check boxes need extra paper work and so it needs to let me know that the file has it or missing it is that possible
give me the results in CSV FORM and the columns are as follow
1. **Category:** This column groups the findings or checklist items based on their nature or the type of issue. Examples include:
* `Parties`: Information about the buyers and sellers involved.
* `Missing Item...`: Indicates required signatures, initials, or information that is absent from the specified document.
* `Checked B...`: Refers to items where a specific checkbox (likely designated as "Box B" or similar in the original form, though here it just seems to indicate *a* box was checked) has been marked, signifying a particular choice or agreement.
* `Conflict`: Highlights inconsistencies or contradictory clauses found within the documents.
2. **Location:** This column specifies exactly *where* in the transaction documents the item being discussed can be found. It typically includes:
* The name of the document (e.g., `Sale Contract`, `Addendum`, `Release Agreement`, `Exclusive Buyer Agency`, `Lead Based Paint`, `In Present Condition Addendum`).
* An internal reference, possibly to an image scan (`Image X`).
* The page number within that document (`Pg Y`).
3. **Line Item(s):** This provides more specific location detail *within* the page mentioned in the "Location" column. It can be:
* A page number (often repeating the one from "Location").
* Specific line numbers or a range of lines (e.g., `725-726`, `10 & 22`, `696; 697`).
* Sometimes blank if the item applies to the whole page or a general section.
4. **Item Type:** This column identifies the *specific element* or clause being reviewed or checked on that line. Examples:
* Identification of parties (`4 Seller 1`, `6 Buyer 2`). The numbers might be internal codes or refer to lines on the original form.
* Signature or initial fields (`Seller Signature Block`, `Bottom Right Initials`, `Buyer Signature`).
* Specific clauses or addenda being checked for presence/selection (`Home Warranty Waiver`, `Seller's Disclosure Addendum Attached`, `Inspection Clause 1`).
* Specific choices within clauses (`Brokerage Consents`, `Seller Knowledge (Presence)`).
5. **Status:** This column indicates the outcome of the review for the specific `Item Type`.
* `Identified`: The required information (like a party's name) was found.
* `Missing`: The required item (like a signature, initial, or checked box) was not found.
* `Checked`: A specific checkbox related to the `Item Type` was found to be marked (ticked).
* `Conflict Detected`: An inconsistency or contradiction was found relating to this item.
6. **Details:** This column provides specific information elaborating on the `Status`.
* If `Identified`, it shows the name or value found (e.g., `VB ONE LLC`, `Dimas Miguel Guerra Pena`).
* If `Missing`, it describes more precisely what is missing (e.g., `Entire block for Seller... is empty`, `Two initial boxes for Seller... are empty`).
* If `Checked`, it often shows the text associated with the checked box or confirms the selection (e.g., `[X] BUYER waives the opportunity...`, `[X] Seller's Disclosure and Condition...`).
* If `Conflict Detected`, it might briefly describe the nature of the conflict (e.g., referencing conflicting checked boxes).
7. **Secondary Question (if applicable):** This column raises follow-up questions, potential issues, or points needing clarification based on the finding in the row. It highlights risks or implications that need to be addressed.
GIVE ME IN CSV FORM DIRECTLY DONT WRITE ANYTHING ELSE
"""
# Initialize Gemini client
images = pdf_to_images(pdf_bytes)
client = genai.Client(api_key="AIzaSyAP85jSUKncrIGOAhm3Gvo-TYra_e1wmEA")
# Prepare image parts
contents = [question]
for img in images:
img_bytes = pil_image_to_bytes(img)
contents.append(types.Part.from_bytes(data=img_bytes, mime_type="image/jpeg"))
# Generate content using Gemini
response = client.models.generate_content(
model="gemini-2.0-flash",
contents=contents
)
return response
def process_local_pdf(pdf_bytes: bytes):
"""
Process a local PDF file with Gemini AI.
Args:
file_path: Path to the PDF file
prompt: The prompt template to use (should contain {page_num} if needed)
api_key: Your Google AI Studio API key
"""
# Configure Gemini
prompt = """Please analyze the provided images of the real estate document set and perform the following actions:
1. **Identify Parties**: Determine and list all present parties involved in the transaction. Always identify and include **Seller 1** and **Buyer 1** if they are present in the documents. Additionally, include **Seller 2** and **Buyer 2** only if they are explicitly mentioned.
2. **Identify Missing Items**: For each identified party, including at minimum **Seller 1** and **Buyer 1**, check all pages for any missing signatures or initials. Only check for **Seller 2** or **Buyer 2** if they were identified in step 1.
3. **Identify Checked Boxes**: Locate and list all checkboxes that have been marked or checked.
4. **Generate Secondary Questions**: For checkboxes that indicate significant waivers (e.g., home warranty, inspection rights, lead paint assessment), specific conditions (e.g., cash sale, contingency status), potential conflicts, or reference other documents, formulate a relevant 'Secondary Question' designed to prompt confirmation or clarification from the user/parties involved.
5. **Check for Required Paperwork**: Based only on the checkboxes identified in step 3 that explicitly state or strongly imply a specific addendum or disclosure document should be attached (e.g., "Lead Based Paint Disclosure Addendum attached", "See Counter Offer Addendum", "Seller's Disclosure...Addendum attached", "Retainer Addendum attached", etc.), check if a document matching that description appears to be present within the provided image set. Note whether this implied paperwork is 'Found', 'Missing', or 'Potentially Missing/Ambiguous'.
6. **Identify Conflicts**: Specifically look for and note any directly contradictory information or conflicting checked boxes (like the conflicting inspection clauses found previously).
7. **Provide Location**: For every identified item (missing signature/initial, checked box, required paperwork status, party identification, conflict), specify the approximate line number(s) or clear location on the page (e.g., Bottom Right Initials, Seller Signature Block).
8. **Format Output**: Present all findings in CSV format with the following columns:
- **Category**: (e.g., Parties, Missing Item, Checked Box, Required Paperwork, Conflict)
- **Location**: (e.g., Sale Contract (Image 8 Pg 1))
- **Line Item(s)**: (e.g., 4)
- **Item Type**: (e.g., Seller 1, Buyer 1, Seller Signature, Seller Initials)
- **Status**: (e.g., Identified, Missing, Checked, Found, Potentially Missing, Conflict)
- **Details**: (e.g., "Seller signature line (top line) is empty.", "Two initial boxes for Seller (approx line 106-107 area) are empty.")
- **Secondary Question** (if applicable): (e.g., "Is the Buyer aware they are waiving the home warranty?", "Has the Buyer received and reviewed the Seller's Disclosure?")
"""
# Convert to images
images = pdf_to_images(pdf_bytes)
# Process each page
combined_df = pd.DataFrame()
for i, img in enumerate(images):
try:
model = genai.GenerativeModel('gemini-2.5-pro-exp-03-25') # Updated model name
local_prompt = prompt.format(i+1)
# Send both the prompt and image to Gemini
response = model.generate_content([local_prompt, img])
# Extract CSV response
answer_csv = extract_csv_from_response(response)
answer_df = csv_to_dataframe(answer_csv)
# Combine DataFrames if needed
if not answer_df.empty:
combined_df = pd.concat([combined_df, answer_df], ignore_index=True)
print(f"Processed page {i+1}")
print("Response:")
print(answer_csv)
print("\n" + "="*50 + "\n")
except Exception as e:
print(f"Error processing page {i+1}: {str(e)}")
return combined_df
def analyze_single_document(images: list, prompt: str) -> dict:
"""Analyze a single document and return results"""
model = genai.GenerativeModel('gemini-2.5-pro-exp-03-25')
response = model.generate_content([prompt] + images)
return response.text
def analyze_pdf_directly(pdf_bytes: bytes, prompt: str, model_name: str = "gemini-1.5-pro"):
"""Analyze a PDF directly using Gemini's PDF support"""
model = genai.GenerativeModel(model_name)
# Create a temporary PDF file
with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as tmp_file:
tmp_file.write(pdf_bytes)
tmp_file_path = tmp_file.name
try:
# Use the file upload feature
response = model.generate_content(
[prompt, genai.upload_file(tmp_file_path)]
)
print(f"Response: {response}")
return response.text
finally:
# Clean up temporary file
if os.path.exists(tmp_file_path):
os.unlink(tmp_file_path)
def extract_response_text(response) -> str:
"""Extract text content from Gemini response object"""
try:
if hasattr(response, 'text'):
return response.text
elif hasattr(response, 'result') and hasattr(response.result, 'candidates'):
for candidate in response.result.candidates:
if hasattr(candidate, 'content') and hasattr(candidate.content, 'parts'):
for part in candidate.content.parts:
if hasattr(part, 'text'):
return part.text
return str(response)
except Exception as e:
print(f"Error extracting response text: {str(e)}")
return str(response)
def extract_csv_from_response(response) -> str:
"""Extract CSV data from Gemini response"""
try:
# Get the text content from the response
response_text = extract_response_text(response)
# Extract CSV content between ```csv markers
csv_match = re.search(r'```csv(.*?)```', response_text, re.DOTALL)
if csv_match:
return csv_match.group(1).strip()
# Fallback: Try to find any CSV-like content
lines = []
in_csv = False
for line in response_text.split('\n'):
if ',' in line and ('Category,' in line or 'Location,' in line):
in_csv = True
if in_csv:
lines.append(line)
if lines:
return '\n'.join(lines)
return response_text # Return full response if no CSV found
except Exception as e:
print(f"Error extracting CSV: {str(e)}")
return response.text if hasattr(response, 'text') else str(response)
def csv_to_dataframe(csv_data: str) -> pd.DataFrame:
"""Convert CSV string to pandas DataFrame with error handling"""
if not csv_data.strip():
return pd.DataFrame()
try:
# Clean line breaks and extra spaces
cleaned_data = "\n".join([line.strip() for line in csv_data.split('\n') if line.strip()])
# Use CSV reader to handle irregular fields
rows = []
reader = csv.reader(io.StringIO(cleaned_data),
delimiter=',',
quotechar='"',
skipinitialspace=True)
header = next(reader)
for row in reader:
if len(row) > len(header):
# Combine extra fields into the last column
row = row[:len(header)-1] + [','.join(row[len(header)-1:])]
rows.append(row)
return pd.DataFrame(rows, columns=header)
except Exception as e:
print(f"CSV conversion error: {str(e)}")
try:
# Fallback to pandas with flexible parsing
return pd.read_csv(io.StringIO(cleaned_data),
on_bad_lines='warn',
engine='python',
quotechar='"',
skipinitialspace=True)
except Exception as fallback_error:
print(f"Fallback conversion failed: {str(fallback_error)}")
return pd.DataFrame()
def save_csv(csv_data: str, filename: str) -> str:
"""Save CSV data to file"""
with open(filename, 'w', newline='', encoding='utf-8') as csvfile:
csvfile.write(csv_data.strip())
return filename
def get_pdf_metadata(pdf_bytes: bytes) -> dict:
"""Extract basic PDF metadata"""
reader = PdfReader(io.BytesIO(pdf_bytes))
return {
'page_count': len(reader.pages),
'author': reader.metadata.author if reader.metadata else None,
'title': reader.metadata.title if reader.metadata else None
} |