import google.generativeai as genai import os import pandas as pd import io import tempfile from PyPDF2 import PdfReader import re import csv def configure_gemini(api_key: str): """Configure Gemini API with the provided key""" genai.configure(api_key=api_key) def analyze_pdf_directly(pdf_bytes: bytes, prompt: str, model_name: str = "gemini-1.5-pro"): """Analyze a PDF directly using Gemini's PDF support""" model = genai.GenerativeModel(model_name) # Create a temporary PDF file with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as tmp_file: tmp_file.write(pdf_bytes) tmp_file_path = tmp_file.name try: # Use the file upload feature response = model.generate_content( [prompt, genai.upload_file(tmp_file_path)] ) print(f"Response: {response}") return response.text finally: # Clean up temporary file if os.path.exists(tmp_file_path): os.unlink(tmp_file_path) def extract_response_text(response) -> str: """Extract text content from Gemini response object""" try: if hasattr(response, 'text'): return response.text elif hasattr(response, 'result') and hasattr(response.result, 'candidates'): for candidate in response.result.candidates: if hasattr(candidate, 'content') and hasattr(candidate.content, 'parts'): for part in candidate.content.parts: if hasattr(part, 'text'): return part.text return str(response) except Exception as e: print(f"Error extracting response text: {str(e)}") return str(response) def extract_csv_from_response(response) -> str: """Extract CSV data from Gemini response""" try: # Get the text content from the response response_text = extract_response_text(response) # Extract CSV content between ```csv markers csv_match = re.search(r'```csv(.*?)```', response_text, re.DOTALL) if csv_match: return csv_match.group(1).strip() # Fallback: Try to find any CSV-like content lines = [] in_csv = False for line in response_text.split('\n'): if ',' in line and ('Category,' in line or 'Location,' in line): in_csv = True if in_csv: lines.append(line) if lines: return '\n'.join(lines) return response_text # Return full response if no CSV found except Exception as e: print(f"Error extracting CSV: {str(e)}") return response.text if hasattr(response, 'text') else str(response) def csv_to_dataframe(csv_data: str) -> pd.DataFrame: """Convert CSV string to pandas DataFrame with error handling""" if not csv_data.strip(): return pd.DataFrame() try: # Clean line breaks and extra spaces cleaned_data = "\n".join([line.strip() for line in csv_data.split('\n') if line.strip()]) # Use CSV reader to handle irregular fields rows = [] reader = csv.reader(io.StringIO(cleaned_data), delimiter=',', quotechar='"', skipinitialspace=True) header = next(reader) for row in reader: if len(row) > len(header): # Combine extra fields into the last column row = row[:len(header)-1] + [','.join(row[len(header)-1:])] rows.append(row) return pd.DataFrame(rows, columns=header) except Exception as e: print(f"CSV conversion error: {str(e)}") try: # Fallback to pandas with flexible parsing return pd.read_csv(io.StringIO(cleaned_data), on_bad_lines='warn', engine='python', quotechar='"', skipinitialspace=True) except Exception as fallback_error: print(f"Fallback conversion failed: {str(fallback_error)}") return pd.DataFrame() def save_csv(csv_data: str, filename: str) -> str: """Save CSV data to file""" with open(filename, 'w', newline='', encoding='utf-8') as csvfile: csvfile.write(csv_data.strip()) return filename def get_pdf_metadata(pdf_bytes: bytes) -> dict: """Extract basic PDF metadata""" reader = PdfReader(io.BytesIO(pdf_bytes)) return { 'page_count': len(reader.pages), 'author': reader.metadata.author if reader.metadata else None, 'title': reader.metadata.title if reader.metadata else None }