File size: 1,093 Bytes
c2864d3
b10bae9
2ea3a36
 
03f0774
419ab6f
9bb1bc6
fcf5834
c2864d3
2ea3a36
fbe647d
 
2ea3a36
 
 
 
 
5020140
68d753f
9bb1bc6
 
68d753f
 
 
 
 
fa58d25
9bb1bc6
 
 
 
 
 
68d753f
9bb1bc6
fa58d25
68d753f
2ea3a36
68d753f
9bb1bc6
68d753f
fa58d25
b10bae9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from flask import Flask, request, jsonify

import whisper
import os
import tempfile
import io
import torchaudio

app = Flask(__name__)

# Initialize Whisper model
whisper_model = whisper.load_model("small")  # Renamed variable




@app.route('/transcribe', methods=['POST'])
def transcribe():
    try:
        # Read raw bytes from the request
        audio_bytes = request.data  
        if not audio_bytes:
            return jsonify({"error": "No audio data provided"}), 400

        # Convert bytes to a file-like object
        audio_file = io.BytesIO(audio_bytes)

        # Load audio as a waveform using torchaudio
        waveform, sample_rate = torchaudio.load(audio_file)

        # Whisper expects a NumPy array, so we convert it
        audio_numpy = waveform.squeeze().numpy()

        # Transcribe the audio
        result = model.transcribe(audio_numpy)

        return jsonify({"text": result["text"]})

    except Exception as e:
        print("Error:", str(e))  # Log error for debugging
        return jsonify({"error": "Internal Server Error", "details": str(e)}), 500