Neda1 commited on
Commit
19bc9fb
Β·
verified Β·
1 Parent(s): 21a7d29

Update upload_to_supabase.py

Browse files
Files changed (1) hide show
  1. upload_to_supabase.py +2 -2
upload_to_supabase.py CHANGED
@@ -12,7 +12,7 @@ SUPABASE_KEY = os.getenv("SUPABASE_KEY")
12
 
13
  # --- Init Supabase & Embeddings ---
14
  supabase: Client = create_client(SUPABASE_URL, SUPABASE_KEY)
15
- embedding_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") # Or OpenAIEmbeddings if you use Groq
16
 
17
  # --- Read CSV File ---
18
  df = pd.read_csv("supabase_docs.csv") # Assuming columns: 'content', 'metadata' or just 'content'
@@ -27,7 +27,7 @@ for _, row in tqdm(df.iterrows(), total=len(df)):
27
  # --- Create Supabase Vector Store and Upload ---
28
  vectorstore = SupabaseVectorStore.from_documents(
29
  documents=documents,
30
- embedding=embedding_model,
31
  client=supabase,
32
  table_name="documents",
33
  query_name="match_documents_langchain"
 
12
 
13
  # --- Init Supabase & Embeddings ---
14
  supabase: Client = create_client(SUPABASE_URL, SUPABASE_KEY)
15
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # Or OpenAIEmbeddings if you use Groq
16
 
17
  # --- Read CSV File ---
18
  df = pd.read_csv("supabase_docs.csv") # Assuming columns: 'content', 'metadata' or just 'content'
 
27
  # --- Create Supabase Vector Store and Upload ---
28
  vectorstore = SupabaseVectorStore.from_documents(
29
  documents=documents,
30
+ embedding=embeddings,
31
  client=supabase,
32
  table_name="documents",
33
  query_name="match_documents_langchain"