Neda1 commited on
Commit
2a89783
Β·
verified Β·
1 Parent(s): 062ef9c

Update agent.py

Browse files
Files changed (1) hide show
  1. agent.py +29 -32
agent.py CHANGED
@@ -192,10 +192,23 @@ def build_graph(provider: str = "groq"):
192
  # Bind tools to LLM
193
  llm_with_tools = llm.bind_tools(tools)
194
 
195
- # Node
196
  def assistant(state: MessagesState):
197
  """Assistant node"""
198
- return {"messages": [llm_with_tools.invoke(state["messages"])]}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199
 
200
  # def retriever(state: MessagesState):
201
  # """Retriever node"""
@@ -213,44 +226,27 @@ def build_graph(provider: str = "groq"):
213
  return {"messages": []}
214
 
215
  query = messages[0].content
216
- similar_question = vector_store.similarity_search(query)
 
 
 
 
 
 
217
 
218
  if not similar_question:
219
  print("⚠️ No similar questions found.")
220
  return {"messages": messages}
221
 
 
 
 
222
  example_msg = HumanMessage(
223
- content=f"Here I provide a similar question and answer for reference:\n\n{similar_question[0].page_content}",
224
  )
225
-
226
  return {"messages": [sys_msg] + messages + [example_msg]}
227
 
228
- # def retriever(state: MessagesState):
229
- # """Retriever node"""
230
- # messages = state.get("messages", [])
231
- # if not messages:
232
- # print("⚠️ No messages received in retriever node.")
233
- # return {"messages": []}
234
-
235
- # query = messages[0].content
236
- # print(f"πŸ” Querying vector store with: {query}")
237
-
238
- # try:
239
- # similar_question = vector_store.similarity_search(query)
240
- # print(f"βœ… Retrieved {len(similar_question)} similar questions.")
241
- # except Exception as e:
242
- # print(f"❌ Error during similarity_search: {e}")
243
- # return {"messages": messages}
244
-
245
- # if not similar_question:
246
- # print("⚠️ No similar questions found.")
247
- # return {"messages": messages}
248
-
249
- # example_msg = HumanMessage(
250
- # content=f"Here I provide a similar question and answer for reference:\n\n{similar_question[0].page_content}"
251
- # )
252
-
253
- # return {"messages": [sys_msg] + messages + [example_msg]}
254
 
255
 
256
  builder = StateGraph(MessagesState)
@@ -277,4 +273,5 @@ if __name__ == "__main__":
277
  messages = [HumanMessage(content=question)]
278
  messages = graph.invoke({"messages": messages})
279
  for m in messages["messages"]:
280
- m.pretty_print()
 
 
192
  # Bind tools to LLM
193
  llm_with_tools = llm.bind_tools(tools)
194
 
 
195
  def assistant(state: MessagesState):
196
  """Assistant node"""
197
+ print("\n🧠 Final prompt to model:")
198
+ for m in state["messages"]:
199
+ print(f"{m.type.upper()}: {m.content[:300]}...\n") # truncate for readability
200
+
201
+ response = llm_with_tools.invoke(state["messages"])
202
+
203
+ print("πŸ’¬ Model response:", response.content[:500], "\n")
204
+ return {"messages": [response]}
205
+
206
+ # Node
207
+ # def assistant(state: MessagesState):
208
+ # """Assistant node"""
209
+ # return {"messages": [llm_with_tools.invoke(state["messages"])]}
210
+
211
+
212
 
213
  # def retriever(state: MessagesState):
214
  # """Retriever node"""
 
226
  return {"messages": []}
227
 
228
  query = messages[0].content
229
+ print(f"\nπŸ” Query to vector store: {query}")
230
+
231
+ try:
232
+ similar_question = vector_store.similarity_search(query)
233
+ except Exception as e:
234
+ print(f"❌ similarity_search failed: {e}")
235
+ return {"messages": messages}
236
 
237
  if not similar_question:
238
  print("⚠️ No similar questions found.")
239
  return {"messages": messages}
240
 
241
+ print(f"βœ… Found {len(similar_question)} similar question(s).")
242
+ print("πŸ“„ First retrieved doc:\n", similar_question[0].page_content)
243
+
244
  example_msg = HumanMessage(
245
+ content=f"Here I provide a similar question and answer for reference:\n\n{similar_question[0].page_content}"
246
  )
 
247
  return {"messages": [sys_msg] + messages + [example_msg]}
248
 
249
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
250
 
251
 
252
  builder = StateGraph(MessagesState)
 
273
  messages = [HumanMessage(content=question)]
274
  messages = graph.invoke({"messages": messages})
275
  for m in messages["messages"]:
276
+ m.pretty_print()
277
+