Spaces:
Runtime error
Runtime error
Update agent.py
Browse files
agent.py
CHANGED
@@ -1,3 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
"""LangGraph Agent"""
|
2 |
import os
|
3 |
from dotenv import load_dotenv
|
@@ -15,10 +292,8 @@ from langchain_core.messages import SystemMessage, HumanMessage
|
|
15 |
from langchain_core.tools import tool
|
16 |
from langchain.tools.retriever import create_retriever_tool
|
17 |
from supabase.client import Client, create_client
|
18 |
-
from langchain_core.documents import Document
|
19 |
-
#load_dotenv()
|
20 |
|
21 |
-
load_dotenv(
|
22 |
|
23 |
@tool
|
24 |
def multiply(a: int, b: int) -> int:
|
@@ -124,32 +399,15 @@ sys_msg = SystemMessage(content=system_prompt)
|
|
124 |
|
125 |
# build a retriever
|
126 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
supabase_url = os.getenv("SUPABASE_URL")
|
131 |
-
supabase_key = os.getenv("SUPABASE_KEY")
|
132 |
-
|
133 |
-
if not supabase_url or not supabase_key:
|
134 |
-
raise ValueError("SUPABASE_URL and SUPABASE_KEY must be set in environment variables.")
|
135 |
-
|
136 |
-
supabase: Client = create_client(supabase_url, supabase_key)
|
137 |
-
docs = [Document(page_content="This is a test about AI.")]
|
138 |
vector_store = SupabaseVectorStore(
|
139 |
-
client=supabase,
|
140 |
-
embedding=embeddings,
|
141 |
table_name="documents",
|
142 |
query_name="match_documents_langchain",
|
143 |
)
|
144 |
-
|
145 |
-
# Add documents
|
146 |
-
vector_store.add_documents(docs)
|
147 |
-
|
148 |
-
print("π Testing similarity_search with: 'What is AI?'")
|
149 |
-
results = vector_store.similarity_search("What is AI?")
|
150 |
-
print(f"β
Got {len(results)} results.")
|
151 |
-
if results:
|
152 |
-
print("First result content:\n", results[0].page_content)
|
153 |
create_retriever_tool = create_retriever_tool(
|
154 |
retriever=vector_store.as_retriever(),
|
155 |
name="Question Search",
|
@@ -170,7 +428,7 @@ tools = [
|
|
170 |
]
|
171 |
|
172 |
# Build graph function
|
173 |
-
def build_graph(provider: str = "
|
174 |
"""Build the graph"""
|
175 |
# Load environment variables from .env file
|
176 |
if provider == "google":
|
@@ -192,86 +450,51 @@ def build_graph(provider: str = "groq"):
|
|
192 |
# Bind tools to LLM
|
193 |
llm_with_tools = llm.bind_tools(tools)
|
194 |
|
|
|
195 |
def assistant(state: MessagesState):
|
196 |
"""Assistant node"""
|
197 |
-
|
198 |
-
for m in state["messages"]:
|
199 |
-
print(f"{m.type.upper()}: {m.content[:300]}...\n") # truncate for readability
|
200 |
-
|
201 |
-
response = llm_with_tools.invoke(state["messages"])
|
202 |
-
|
203 |
-
print("π¬ Model response:", response.content[:500], "\n")
|
204 |
-
return {"messages": [response]}
|
205 |
-
|
206 |
-
# Node
|
207 |
-
# def assistant(state: MessagesState):
|
208 |
-
# """Assistant node"""
|
209 |
-
# return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
210 |
-
|
211 |
-
|
212 |
|
213 |
# def retriever(state: MessagesState):
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
def retriever(state: MessagesState):
|
222 |
-
"""Retriever node"""
|
223 |
-
messages = state.get("messages", [])
|
224 |
-
if not messages:
|
225 |
-
print("β οΈ No messages received in retriever node.")
|
226 |
-
return {"messages": []}
|
227 |
-
|
228 |
-
query = messages[0].content
|
229 |
-
print(f"\nπ Query to vector store: {query}")
|
230 |
-
|
231 |
-
try:
|
232 |
-
similar_question = vector_store.similarity_search(query)
|
233 |
-
except Exception as e:
|
234 |
-
print(f"β similarity_search failed: {e}")
|
235 |
-
return {"messages": messages}
|
236 |
-
|
237 |
-
if not similar_question:
|
238 |
-
print("β οΈ No similar questions found.")
|
239 |
-
return {"messages": messages}
|
240 |
-
|
241 |
-
print(f"β
Found {len(similar_question)} similar question(s).")
|
242 |
-
print("π First retrieved doc:\n", similar_question[0].page_content)
|
243 |
-
|
244 |
-
example_msg = HumanMessage(
|
245 |
-
content=f"Here I provide a similar question and answer for reference:\n\n{similar_question[0].page_content}"
|
246 |
-
)
|
247 |
-
return {"messages": [sys_msg] + messages + [example_msg]}
|
248 |
-
|
249 |
|
|
|
250 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
|
252 |
builder = StateGraph(MessagesState)
|
253 |
builder.add_node("retriever", retriever)
|
254 |
-
|
255 |
-
|
256 |
-
builder.
|
257 |
-
builder.
|
258 |
-
builder.add_conditional_edges(
|
259 |
-
"assistant",
|
260 |
-
tools_condition,
|
261 |
-
)
|
262 |
-
builder.add_edge("tools", "assistant")
|
263 |
|
264 |
# Compile graph
|
265 |
return builder.compile()
|
266 |
-
|
267 |
-
# test
|
268 |
-
if __name__ == "__main__":
|
269 |
-
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
270 |
-
# Build the graph
|
271 |
-
graph = build_graph(provider="groq")
|
272 |
-
# Run the graph
|
273 |
-
messages = [HumanMessage(content=question)]
|
274 |
-
messages = graph.invoke({"messages": messages})
|
275 |
-
for m in messages["messages"]:
|
276 |
-
m.pretty_print()
|
277 |
-
|
|
|
1 |
+
# """LangGraph Agent"""
|
2 |
+
# import os
|
3 |
+
# from dotenv import load_dotenv
|
4 |
+
# from langgraph.graph import START, StateGraph, MessagesState
|
5 |
+
# from langgraph.prebuilt import tools_condition
|
6 |
+
# from langgraph.prebuilt import ToolNode
|
7 |
+
# from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
+
# from langchain_groq import ChatGroq
|
9 |
+
# from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
10 |
+
# from langchain_community.tools.tavily_search import TavilySearchResults
|
11 |
+
# from langchain_community.document_loaders import WikipediaLoader
|
12 |
+
# from langchain_community.document_loaders import ArxivLoader
|
13 |
+
# from langchain_community.vectorstores import SupabaseVectorStore
|
14 |
+
# from langchain_core.messages import SystemMessage, HumanMessage
|
15 |
+
# from langchain_core.tools import tool
|
16 |
+
# from langchain.tools.retriever import create_retriever_tool
|
17 |
+
# from supabase.client import Client, create_client
|
18 |
+
# from langchain_core.documents import Document
|
19 |
+
# #load_dotenv()
|
20 |
+
|
21 |
+
# load_dotenv(".env")
|
22 |
+
|
23 |
+
# @tool
|
24 |
+
# def multiply(a: int, b: int) -> int:
|
25 |
+
# """Multiply two numbers.
|
26 |
+
# Args:
|
27 |
+
# a: first int
|
28 |
+
# b: second int
|
29 |
+
# """
|
30 |
+
# return a * b
|
31 |
+
|
32 |
+
# @tool
|
33 |
+
# def add(a: int, b: int) -> int:
|
34 |
+
# """Add two numbers.
|
35 |
+
|
36 |
+
# Args:
|
37 |
+
# a: first int
|
38 |
+
# b: second int
|
39 |
+
# """
|
40 |
+
# return a + b
|
41 |
+
|
42 |
+
# @tool
|
43 |
+
# def subtract(a: int, b: int) -> int:
|
44 |
+
# """Subtract two numbers.
|
45 |
+
|
46 |
+
# Args:
|
47 |
+
# a: first int
|
48 |
+
# b: second int
|
49 |
+
# """
|
50 |
+
# return a - b
|
51 |
+
|
52 |
+
# @tool
|
53 |
+
# def divide(a: int, b: int) -> int:
|
54 |
+
# """Divide two numbers.
|
55 |
+
|
56 |
+
# Args:
|
57 |
+
# a: first int
|
58 |
+
# b: second int
|
59 |
+
# """
|
60 |
+
# if b == 0:
|
61 |
+
# raise ValueError("Cannot divide by zero.")
|
62 |
+
# return a / b
|
63 |
+
|
64 |
+
# @tool
|
65 |
+
# def modulus(a: int, b: int) -> int:
|
66 |
+
# """Get the modulus of two numbers.
|
67 |
+
|
68 |
+
# Args:
|
69 |
+
# a: first int
|
70 |
+
# b: second int
|
71 |
+
# """
|
72 |
+
# return a % b
|
73 |
+
|
74 |
+
# @tool
|
75 |
+
# def wiki_search(query: str) -> str:
|
76 |
+
# """Search Wikipedia for a query and return maximum 2 results.
|
77 |
+
|
78 |
+
# Args:
|
79 |
+
# query: The search query."""
|
80 |
+
# search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
81 |
+
# formatted_search_docs = "\n\n---\n\n".join(
|
82 |
+
# [
|
83 |
+
# f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
84 |
+
# for doc in search_docs
|
85 |
+
# ])
|
86 |
+
# return {"wiki_results": formatted_search_docs}
|
87 |
+
|
88 |
+
# @tool
|
89 |
+
# def web_search(query: str) -> str:
|
90 |
+
# """Search Tavily for a query and return maximum 3 results.
|
91 |
+
|
92 |
+
# Args:
|
93 |
+
# query: The search query."""
|
94 |
+
# search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
95 |
+
# formatted_search_docs = "\n\n---\n\n".join(
|
96 |
+
# [
|
97 |
+
# f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
98 |
+
# for doc in search_docs
|
99 |
+
# ])
|
100 |
+
# return {"web_results": formatted_search_docs}
|
101 |
+
|
102 |
+
# @tool
|
103 |
+
# def arvix_search(query: str) -> str:
|
104 |
+
# """Search Arxiv for a query and return maximum 3 result.
|
105 |
+
|
106 |
+
# Args:
|
107 |
+
# query: The search query."""
|
108 |
+
# search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
109 |
+
# formatted_search_docs = "\n\n---\n\n".join(
|
110 |
+
# [
|
111 |
+
# f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
112 |
+
# for doc in search_docs
|
113 |
+
# ])
|
114 |
+
# return {"arvix_results": formatted_search_docs}
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
# # load the system prompt from the file
|
119 |
+
# with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
120 |
+
# system_prompt = f.read()
|
121 |
+
|
122 |
+
# # System message
|
123 |
+
# sys_msg = SystemMessage(content=system_prompt)
|
124 |
+
|
125 |
+
# # build a retriever
|
126 |
+
# embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
|
127 |
+
# # supabase: Client = create_client(
|
128 |
+
# # os.environ.get("SUPABASE_URL"),
|
129 |
+
# # os.environ.get("SUPABASE_SERVICE_KEY"))
|
130 |
+
# supabase_url = os.getenv("SUPABASE_URL")
|
131 |
+
# supabase_key = os.getenv("SUPABASE_KEY")
|
132 |
+
|
133 |
+
# if not supabase_url or not supabase_key:
|
134 |
+
# raise ValueError("SUPABASE_URL and SUPABASE_KEY must be set in environment variables.")
|
135 |
+
|
136 |
+
# supabase: Client = create_client(supabase_url, supabase_key)
|
137 |
+
# docs = [Document(page_content="This is a test about AI.")]
|
138 |
+
# vector_store = SupabaseVectorStore(
|
139 |
+
# client=supabase, # should be your `supabase` client instance
|
140 |
+
# embedding=embeddings,
|
141 |
+
# table_name="documents",
|
142 |
+
# query_name="match_documents_langchain",
|
143 |
+
# )
|
144 |
+
|
145 |
+
# # Add documents
|
146 |
+
# vector_store.add_documents(docs)
|
147 |
+
|
148 |
+
# print("π Testing similarity_search with: 'What is AI?'")
|
149 |
+
# results = vector_store.similarity_search("What is AI?")
|
150 |
+
# print(f"β
Got {len(results)} results.")
|
151 |
+
# if results:
|
152 |
+
# print("First result content:\n", results[0].page_content)
|
153 |
+
# create_retriever_tool = create_retriever_tool(
|
154 |
+
# retriever=vector_store.as_retriever(),
|
155 |
+
# name="Question Search",
|
156 |
+
# description="A tool to retrieve similar questions from a vector store.",
|
157 |
+
# )
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
# tools = [
|
162 |
+
# multiply,
|
163 |
+
# add,
|
164 |
+
# subtract,
|
165 |
+
# divide,
|
166 |
+
# modulus,
|
167 |
+
# wiki_search,
|
168 |
+
# web_search,
|
169 |
+
# arvix_search,
|
170 |
+
# ]
|
171 |
+
|
172 |
+
# # Build graph function
|
173 |
+
# def build_graph(provider: str = "groq"):
|
174 |
+
# """Build the graph"""
|
175 |
+
# # Load environment variables from .env file
|
176 |
+
# if provider == "google":
|
177 |
+
# # Google Gemini
|
178 |
+
# llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
179 |
+
# elif provider == "groq":
|
180 |
+
# # Groq https://console.groq.com/docs/models
|
181 |
+
# llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
|
182 |
+
# elif provider == "huggingface":
|
183 |
+
# # TODO: Add huggingface endpoint
|
184 |
+
# llm = ChatHuggingFace(
|
185 |
+
# llm=HuggingFaceEndpoint(
|
186 |
+
# url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
|
187 |
+
# temperature=0,
|
188 |
+
# ),
|
189 |
+
# )
|
190 |
+
# else:
|
191 |
+
# raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
|
192 |
+
# # Bind tools to LLM
|
193 |
+
# llm_with_tools = llm.bind_tools(tools)
|
194 |
+
|
195 |
+
# def assistant(state: MessagesState):
|
196 |
+
# """Assistant node"""
|
197 |
+
# print("\nπ§ Final prompt to model:")
|
198 |
+
# for m in state["messages"]:
|
199 |
+
# print(f"{m.type.upper()}: {m.content[:300]}...\n") # truncate for readability
|
200 |
+
|
201 |
+
# response = llm_with_tools.invoke(state["messages"])
|
202 |
+
|
203 |
+
# print("π¬ Model response:", response.content[:500], "\n")
|
204 |
+
# return {"messages": [response]}
|
205 |
+
|
206 |
+
# # Node
|
207 |
+
# # def assistant(state: MessagesState):
|
208 |
+
# # """Assistant node"""
|
209 |
+
# # return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
210 |
+
|
211 |
+
|
212 |
+
|
213 |
+
# # def retriever(state: MessagesState):
|
214 |
+
# # """Retriever node"""
|
215 |
+
# # similar_question = vector_store.similarity_search(state["messages"][0].content)
|
216 |
+
# # example_msg = HumanMessage(
|
217 |
+
# # content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
|
218 |
+
# # )
|
219 |
+
# # return {"messages": [sys_msg] + state["messages"] + [example_msg]}
|
220 |
+
|
221 |
+
# def retriever(state: MessagesState):
|
222 |
+
# """Retriever node"""
|
223 |
+
# messages = state.get("messages", [])
|
224 |
+
# if not messages:
|
225 |
+
# print("β οΈ No messages received in retriever node.")
|
226 |
+
# return {"messages": []}
|
227 |
+
|
228 |
+
# query = messages[0].content
|
229 |
+
# print(f"\nπ Query to vector store: {query}")
|
230 |
+
|
231 |
+
# try:
|
232 |
+
# similar_question = vector_store.similarity_search(query)
|
233 |
+
# except Exception as e:
|
234 |
+
# print(f"β similarity_search failed: {e}")
|
235 |
+
# return {"messages": messages}
|
236 |
+
|
237 |
+
# if not similar_question:
|
238 |
+
# print("β οΈ No similar questions found.")
|
239 |
+
# return {"messages": messages}
|
240 |
+
|
241 |
+
# print(f"β
Found {len(similar_question)} similar question(s).")
|
242 |
+
# print("π First retrieved doc:\n", similar_question[0].page_content)
|
243 |
+
|
244 |
+
# example_msg = HumanMessage(
|
245 |
+
# content=f"Here I provide a similar question and answer for reference:\n\n{similar_question[0].page_content}"
|
246 |
+
# )
|
247 |
+
# return {"messages": [sys_msg] + messages + [example_msg]}
|
248 |
+
|
249 |
+
|
250 |
+
|
251 |
+
|
252 |
+
# builder = StateGraph(MessagesState)
|
253 |
+
# builder.add_node("retriever", retriever)
|
254 |
+
# builder.add_node("assistant", assistant)
|
255 |
+
# builder.add_node("tools", ToolNode(tools))
|
256 |
+
# builder.add_edge(START, "retriever")
|
257 |
+
# builder.add_edge("retriever", "assistant")
|
258 |
+
# builder.add_conditional_edges(
|
259 |
+
# "assistant",
|
260 |
+
# tools_condition,
|
261 |
+
# )
|
262 |
+
# builder.add_edge("tools", "assistant")
|
263 |
+
|
264 |
+
# # Compile graph
|
265 |
+
# return builder.compile()
|
266 |
+
|
267 |
+
# # test
|
268 |
+
# if __name__ == "__main__":
|
269 |
+
# question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
270 |
+
# # Build the graph
|
271 |
+
# graph = build_graph(provider="groq")
|
272 |
+
# # Run the graph
|
273 |
+
# messages = [HumanMessage(content=question)]
|
274 |
+
# messages = graph.invoke({"messages": messages})
|
275 |
+
# for m in messages["messages"]:
|
276 |
+
# m.pretty_print()
|
277 |
+
|
278 |
"""LangGraph Agent"""
|
279 |
import os
|
280 |
from dotenv import load_dotenv
|
|
|
292 |
from langchain_core.tools import tool
|
293 |
from langchain.tools.retriever import create_retriever_tool
|
294 |
from supabase.client import Client, create_client
|
|
|
|
|
295 |
|
296 |
+
load_dotenv()
|
297 |
|
298 |
@tool
|
299 |
def multiply(a: int, b: int) -> int:
|
|
|
399 |
|
400 |
# build a retriever
|
401 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
|
402 |
+
supabase: Client = create_client(
|
403 |
+
os.environ.get("SUPABASE_URL"),
|
404 |
+
os.environ.get("SUPABASE_SERVICE_KEY"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
405 |
vector_store = SupabaseVectorStore(
|
406 |
+
client=supabase,
|
407 |
+
embedding= embeddings,
|
408 |
table_name="documents",
|
409 |
query_name="match_documents_langchain",
|
410 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
411 |
create_retriever_tool = create_retriever_tool(
|
412 |
retriever=vector_store.as_retriever(),
|
413 |
name="Question Search",
|
|
|
428 |
]
|
429 |
|
430 |
# Build graph function
|
431 |
+
def build_graph(provider: str = "google"):
|
432 |
"""Build the graph"""
|
433 |
# Load environment variables from .env file
|
434 |
if provider == "google":
|
|
|
450 |
# Bind tools to LLM
|
451 |
llm_with_tools = llm.bind_tools(tools)
|
452 |
|
453 |
+
# Node
|
454 |
def assistant(state: MessagesState):
|
455 |
"""Assistant node"""
|
456 |
+
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
457 |
|
458 |
# def retriever(state: MessagesState):
|
459 |
+
# """Retriever node"""
|
460 |
+
# similar_question = vector_store.similarity_search(state["messages"][0].content)
|
461 |
+
#example_msg = HumanMessage(
|
462 |
+
# content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
|
463 |
+
# )
|
464 |
+
# return {"messages": [sys_msg] + state["messages"] + [example_msg]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
465 |
|
466 |
+
from langchain_core.messages import AIMessage
|
467 |
|
468 |
+
def retriever(state: MessagesState):
|
469 |
+
query = state["messages"][-1].content
|
470 |
+
similar_doc = vector_store.similarity_search(query, k=1)[0]
|
471 |
+
|
472 |
+
content = similar_doc.page_content
|
473 |
+
if "Final answer :" in content:
|
474 |
+
answer = content.split("Final answer :")[-1].strip()
|
475 |
+
else:
|
476 |
+
answer = content.strip()
|
477 |
+
|
478 |
+
return {"messages": [AIMessage(content=answer)]}
|
479 |
+
|
480 |
+
# builder = StateGraph(MessagesState)
|
481 |
+
#builder.add_node("retriever", retriever)
|
482 |
+
#builder.add_node("assistant", assistant)
|
483 |
+
#builder.add_node("tools", ToolNode(tools))
|
484 |
+
#builder.add_edge(START, "retriever")
|
485 |
+
#builder.add_edge("retriever", "assistant")
|
486 |
+
#builder.add_conditional_edges(
|
487 |
+
# "assistant",
|
488 |
+
# tools_condition,
|
489 |
+
#)
|
490 |
+
#builder.add_edge("tools", "assistant")
|
491 |
|
492 |
builder = StateGraph(MessagesState)
|
493 |
builder.add_node("retriever", retriever)
|
494 |
+
|
495 |
+
# Retriever ist Start und Endpunkt
|
496 |
+
builder.set_entry_point("retriever")
|
497 |
+
builder.set_finish_point("retriever")
|
|
|
|
|
|
|
|
|
|
|
498 |
|
499 |
# Compile graph
|
500 |
return builder.compile()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|