Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
3 |
+
import torch
|
4 |
+
import nltk
|
5 |
+
from nltk.util import ngrams
|
6 |
+
from nltk.probability import FreqDist
|
7 |
+
import plotly.express as px
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from collections import Counter
|
10 |
+
from nltk.corpus import stopwords
|
11 |
+
import string
|
12 |
+
|
13 |
+
import nltk
|
14 |
+
nltk.download('punkt')
|
15 |
+
nltk.download('stopwords')
|
16 |
+
# Initialize tokenizer and model
|
17 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
18 |
+
model = GPT2LMHeadModel.from_pretrained('gpt2')
|
19 |
+
|
20 |
+
def c_perplexity(text):
|
21 |
+
"""Calculate the perplexity of the given text using GPT-2."""
|
22 |
+
if not text.strip():
|
23 |
+
return float('inf') # Return inf for empty input
|
24 |
+
|
25 |
+
input_ids = tokenizer.encode(text, add_special_tokens=False, return_tensors='pt')
|
26 |
+
if input_ids.size(1) == 0: # Check for empty input after encoding
|
27 |
+
return float('inf')
|
28 |
+
|
29 |
+
with torch.no_grad():
|
30 |
+
outputs = model(input_ids)
|
31 |
+
logits = outputs.logits
|
32 |
+
|
33 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), input_ids.view(-1))
|
34 |
+
perplexity = torch.exp(loss)
|
35 |
+
return perplexity.item()
|
36 |
+
|
37 |
+
def c_burstiness(text):
|
38 |
+
"""Calculate the burstiness of the given text."""
|
39 |
+
tokens = nltk.word_tokenize(text.lower())
|
40 |
+
if not tokens:
|
41 |
+
return 0.0
|
42 |
+
|
43 |
+
word_freq = FreqDist(tokens)
|
44 |
+
repeated_count = sum(count > 1 for count in word_freq.values())
|
45 |
+
b_score = repeated_count / len(word_freq) if len(word_freq) > 0 else 0.0
|
46 |
+
return b_score
|
47 |
+
|
48 |
+
def top_repword_count(text):
|
49 |
+
"""Generate a bar chart of the top 10 most repeated words."""
|
50 |
+
tokens = nltk.word_tokenize(text.lower())
|
51 |
+
stop_words = set(stopwords.words('english'))
|
52 |
+
tokens = [token for token in tokens if token not in stop_words and token not in string.punctuation]
|
53 |
+
|
54 |
+
word_counts = Counter(tokens)
|
55 |
+
top_words = word_counts.most_common(10)
|
56 |
+
|
57 |
+
if not top_words:
|
58 |
+
st.write("No significant words found.")
|
59 |
+
return
|
60 |
+
|
61 |
+
words, counts = zip(*top_words)
|
62 |
+
fig = px.bar(x=words, y=counts, labels={'x': 'Words', 'y': 'Counts'}, title="Top 10 Most Repeated Words in the Text")
|
63 |
+
st.plotly_chart(fig, user_container_width=True)
|
64 |
+
|
65 |
+
# Streamlit app configuration
|
66 |
+
st.set_page_config(layout="wide")
|
67 |
+
|
68 |
+
st.title("AI Content Detector")
|
69 |
+
|
70 |
+
text_area = st.text_area("Enter your text here!")
|
71 |
+
|
72 |
+
if text_area:
|
73 |
+
if st.button("Analyse the content"):
|
74 |
+
col1, col2, col3 = st.columns([1, 2, 1])
|
75 |
+
|
76 |
+
with col1:
|
77 |
+
st.info("Your input text")
|
78 |
+
st.success(text_area)
|
79 |
+
|
80 |
+
with col2:
|
81 |
+
st.info("Your output score")
|
82 |
+
perplexity = c_perplexity(text_area)
|
83 |
+
burstiness = c_burstiness(text_area)
|
84 |
+
|
85 |
+
st.success(f"Perplexity score: {perplexity}")
|
86 |
+
st.success(f"Burstiness score: {burstiness}")
|
87 |
+
|
88 |
+
if perplexity > 40000 or burstiness < 0.24:
|
89 |
+
st.error("Result: The text is likely AI-generated.")
|
90 |
+
else:
|
91 |
+
st.success("Result: The text is not AI-generated.")
|
92 |
+
|
93 |
+
st.warning("Disclaimer: AI plagiarism detector apps can assist in identifying potential instances of plagiarism.")
|
94 |
+
|
95 |
+
with col3:
|
96 |
+
st.info("Basic Review")
|
97 |
+
top_repword_count(text_area)
|