NemesisAlm commited on
Commit
074afb0
·
1 Parent(s): 375e423

Translate in Dutch

Browse files
Files changed (1) hide show
  1. app.py +8 -4
app.py CHANGED
@@ -3,15 +3,18 @@ import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
 
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
  # load speech translation checkpoint
12
- asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
 
 
 
15
  processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
  model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
@@ -22,12 +25,13 @@ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze
22
 
23
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
  return outputs["text"]
27
 
28
 
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
 
31
  speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
32
  return speech.cpu()
33
 
 
3
  import torch
4
  from datasets import load_dataset
5
 
6
+ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, AutoProcessor
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
  # load speech translation checkpoint
12
+ asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", chunk_length_s=30, device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
+ #processor = AutoProcessor.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
16
+ #model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device)
17
+
18
  processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
19
 
20
  model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
 
25
 
26
 
27
  def translate(audio):
28
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language":"nl"})
29
  return outputs["text"]
30
 
31
 
32
  def synthesise(text):
33
+ inputs = processor(text=text, padding='max_length', truncation=True, return_tensors="pt")
34
+ #inputs = processor(text=text, padding='max_length', truncation=True, return_tensors="pt")
35
  speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
36
  return speech.cpu()
37