Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
@@ -156,58 +156,52 @@ class Social_Media_Captioner:
|
|
156 |
|
157 |
|
158 |
def _load_model(self):
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
self.model = AutoModelForCausalLM.from_pretrained(
|
167 |
-
self.
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
171 |
)
|
|
|
172 |
|
173 |
# Defining the tokenizers
|
174 |
-
self.tokenizer = AutoTokenizer.from_pretrained(self.
|
175 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
176 |
|
177 |
-
|
178 |
-
|
179 |
-
self.lora_config = LoraConfig(
|
180 |
-
r=16,
|
181 |
-
lora_alpha=32,
|
182 |
-
target_modules=["query_key_value"],
|
183 |
-
lora_dropout=0.05,
|
184 |
-
bias="none",
|
185 |
-
task_type="CAUSAL_LM"
|
186 |
-
)
|
187 |
-
self.model = get_peft_model(self.model, self.lora_config)
|
188 |
-
|
189 |
-
# Fitting the adapters
|
190 |
-
self.peft_config = PeftConfig.from_pretrained(self.peft_model_name)
|
191 |
-
self.model = AutoModelForCausalLM.from_pretrained(
|
192 |
-
self.peft_config.base_model_name_or_path,
|
193 |
-
return_dict = True,
|
194 |
-
quantization_config = self.bnb_config,
|
195 |
-
device_map= "auto",
|
196 |
-
trust_remote_code = True
|
197 |
-
)
|
198 |
-
self.model = PeftModel.from_pretrained(self.model, self.peft_model_name)
|
199 |
-
|
200 |
-
# Defining the tokenizers
|
201 |
-
self.tokenizer = AutoTokenizer.from_pretrained(self.peft_config.base_model_name_or_path)
|
202 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token
|
203 |
-
|
204 |
-
self.model_loaded = True
|
205 |
-
print("Model Loaded successfully")
|
206 |
-
|
207 |
-
except Exception as e:
|
208 |
-
print(e)
|
209 |
-
self.model_loaded = False
|
210 |
-
|
211 |
|
212 |
def inference(self, input_text: str, use_cached=True, cache_generation=True) -> str | None:
|
213 |
if not self.model_loaded:
|
|
|
156 |
|
157 |
|
158 |
def _load_model(self):
|
159 |
+
self.bnb_config = BitsAndBytesConfig(
|
160 |
+
load_in_4bit = True,
|
161 |
+
bnb_4bit_use_double_quant = True,
|
162 |
+
bnb_4bit_quant_type= "nf4",
|
163 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
164 |
+
)
|
165 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
166 |
+
self.MODEL_NAME,
|
167 |
+
device_map = "auto",
|
168 |
+
trust_remote_code = True,
|
169 |
+
quantization_config = self.bnb_config
|
170 |
+
)
|
171 |
+
|
172 |
+
# Defining the tokenizers
|
173 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.MODEL_NAME)
|
174 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
175 |
+
|
176 |
+
if self.use_finetuned:
|
177 |
+
# LORA Config Model
|
178 |
+
self.lora_config = LoraConfig(
|
179 |
+
r=16,
|
180 |
+
lora_alpha=32,
|
181 |
+
target_modules=["query_key_value"],
|
182 |
+
lora_dropout=0.05,
|
183 |
+
bias="none",
|
184 |
+
task_type="CAUSAL_LM"
|
185 |
+
)
|
186 |
+
self.model = get_peft_model(self.model, self.lora_config)
|
187 |
+
|
188 |
+
# Fitting the adapters
|
189 |
+
self.peft_config = PeftConfig.from_pretrained(self.peft_model_name)
|
190 |
self.model = AutoModelForCausalLM.from_pretrained(
|
191 |
+
self.peft_config.base_model_name_or_path,
|
192 |
+
return_dict = True,
|
193 |
+
quantization_config = self.bnb_config,
|
194 |
+
device_map= "auto",
|
195 |
+
trust_remote_code = True
|
196 |
)
|
197 |
+
self.model = PeftModel.from_pretrained(self.model, self.peft_model_name)
|
198 |
|
199 |
# Defining the tokenizers
|
200 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.peft_config.base_model_name_or_path)
|
201 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
202 |
|
203 |
+
self.model_loaded = True
|
204 |
+
print("Model Loaded successfully")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
def inference(self, input_text: str, use_cached=True, cache_generation=True) -> str | None:
|
207 |
if not self.model_loaded:
|