File size: 13,912 Bytes
96134ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
import sys
import time
import tqdm
import torch
import logging
import librosa
import argparse
import scipy.signal
import logging.handlers

import numpy as np
import soundfile as sf

from torch import inference_mode
from distutils.util import strtobool

sys.path.append(os.getcwd())

from main.configs.config import Config
from main.library.audioldm2.utils import load_audio
from main.library.audioldm2.models import load_model

config = Config()
translations = config.translations
logger = logging.getLogger(__name__)
logger.propagate = False

for l in ["torch", "httpx", "httpcore", "diffusers", "transformers"]:
    logging.getLogger(l).setLevel(logging.ERROR)

if logger.hasHandlers(): logger.handlers.clear()
else:
    console_handler = logging.StreamHandler()
    console_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
    console_handler.setFormatter(console_formatter)
    console_handler.setLevel(logging.INFO)
    file_handler = logging.handlers.RotatingFileHandler(os.path.join("assets", "logs", "audioldm2.log"), maxBytes=5*1024*1024, backupCount=3, encoding='utf-8')
    file_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
    file_handler.setFormatter(file_formatter)
    file_handler.setLevel(logging.DEBUG)
    logger.addHandler(console_handler)
    logger.addHandler(file_handler)
    logger.setLevel(logging.DEBUG)

def parse_arguments():
    parser = argparse.ArgumentParser()
    parser.add_argument("--input_path", type=str, required=True)
    parser.add_argument("--output_path", type=str, default="./output.wav")
    parser.add_argument("--export_format", type=str, default="wav")
    parser.add_argument("--sample_rate", type=int, default=44100)
    parser.add_argument("--audioldm_model", type=str, default="audioldm2-music")
    parser.add_argument("--source_prompt", type=str, default="")
    parser.add_argument("--target_prompt", type=str, default="")
    parser.add_argument("--steps", type=int, default=200)
    parser.add_argument("--cfg_scale_src", type=float, default=3.5)
    parser.add_argument("--cfg_scale_tar", type=float, default=12)
    parser.add_argument("--t_start", type=int, default=45)
    parser.add_argument("--save_compute", type=lambda x: bool(strtobool(x)), default=False)

    return parser.parse_args()

def main():
    args = parse_arguments()
    input_path, output_path, export_format, sample_rate, audioldm_model, source_prompt, target_prompt, steps, cfg_scale_src, cfg_scale_tar, t_start, save_compute = args.input_path, args.output_path, args.export_format, args.sample_rate, args.audioldm_model, args.source_prompt, args.target_prompt, args.steps, args.cfg_scale_src, args.cfg_scale_tar, args.t_start, args.save_compute

    log_data = {translations['audio_path']: input_path, translations['output_path']: output_path.replace('wav', export_format), translations['model_name']: audioldm_model, translations['export_format']: export_format, translations['sample_rate']: sample_rate, translations['steps']: steps, translations['source_prompt']: source_prompt, translations['target_prompt']: target_prompt, translations['cfg_scale_src']: cfg_scale_src, translations['cfg_scale_tar']: cfg_scale_tar, translations['t_start']: t_start, translations['save_compute']: save_compute}

    for key, value in log_data.items():
        logger.debug(f"{key}: {value}")
   
    start_time = time.time()
    logger.info(translations["start_edit"].format(input_path=input_path))
    pid_path = os.path.join("assets", "audioldm2_pid.txt")
    with open(pid_path, "w") as pid_file:
        pid_file.write(str(os.getpid()))
    
    try:
        edit(input_path, output_path, audioldm_model, source_prompt, target_prompt, steps, cfg_scale_src, cfg_scale_tar, t_start, save_compute, sample_rate, config.device, export_format=export_format)
    except Exception as e:
        logger.error(translations["error_edit"].format(e=e))
        import traceback
        logger.debug(traceback.format_exc())
        
    logger.info(translations["edit_success"].format(time=f"{(time.time() - start_time):.2f}", output_path=output_path.replace('wav', export_format)))

def invert(ldm_stable, x0, prompt_src, num_diffusion_steps, cfg_scale_src, duration, save_compute):
    with inference_mode():
        w0 = ldm_stable.vae_encode(x0)

    _, zs, wts, extra_info = inversion_forward_process(ldm_stable, w0, etas=1, prompts=[prompt_src], cfg_scales=[cfg_scale_src], num_inference_steps=num_diffusion_steps, numerical_fix=True, duration=duration, save_compute=save_compute)
    return zs, wts, extra_info

def low_pass_filter(audio, cutoff=7500, sr=16000):
    b, a = scipy.signal.butter(4, cutoff / (sr / 2), btype='low')
    return scipy.signal.filtfilt(b, a, audio)

def sample(output_audio, sr, ldm_stable, zs, wts, extra_info, prompt_tar, tstart, cfg_scale_tar, duration, save_compute, export_format = "wav"):
    tstart = torch.tensor(tstart, dtype=torch.int32)
    w0, _ = inversion_reverse_process(ldm_stable, xT=wts, tstart=tstart, etas=1., prompts=[prompt_tar], neg_prompts=[""], cfg_scales=[cfg_scale_tar], zs=zs[:int(tstart)], duration=duration, extra_info=extra_info, save_compute=save_compute)

    with inference_mode():
        x0_dec = ldm_stable.vae_decode(w0.to(torch.float16 if config.is_half else torch.float32))

    if x0_dec.dim() < 4: x0_dec = x0_dec[None, :, :, :]

    with torch.no_grad():
        audio = ldm_stable.decode_to_mel(x0_dec.to(torch.float16 if config.is_half else torch.float32))

    audio = audio.float().squeeze().cpu().numpy()
    orig_sr = 16000

    if sr != 16000 and sr > 0: 
        audio = librosa.resample(audio, orig_sr=orig_sr, target_sr=sr, res_type="soxr_vhq")
        orig_sr = sr

    audio = low_pass_filter(audio, 7500, orig_sr)

    sf.write(output_audio, np.tile(audio, (2, 1)).T, orig_sr, format=export_format)
    return output_audio

def edit(input_audio, output_audio, model_id, source_prompt = "", target_prompt = "", steps = 200, cfg_scale_src = 3.5, cfg_scale_tar = 12, t_start = 45, save_compute = True, sr = 44100, device = "cpu", export_format = "wav"):
    ldm_stable = load_model(model_id, device=device)
    ldm_stable.model.scheduler.set_timesteps(steps, device=device)
    x0, duration = load_audio(input_audio, ldm_stable.get_melspectrogram(), device=device)
    zs_tensor, wts_tensor, extra_info_list = invert(ldm_stable=ldm_stable, x0=x0, prompt_src=source_prompt, num_diffusion_steps=steps, cfg_scale_src=cfg_scale_src, duration=duration, save_compute=save_compute)

    return sample(output_audio, sr, ldm_stable, zs_tensor, wts_tensor, extra_info_list, prompt_tar=target_prompt, tstart=int(t_start / 100 * steps), cfg_scale_tar=cfg_scale_tar, duration=duration, save_compute=save_compute, export_format=export_format)

def inversion_forward_process(model, x0, etas = None, prompts = [""], cfg_scales = [3.5], num_inference_steps = 50, numerical_fix = False, duration = None, first_order = False, save_compute = True):
    if len(prompts) > 1 or prompts[0] != "":
        text_embeddings_hidden_states, text_embeddings_class_labels, text_embeddings_boolean_prompt_mask = model.encode_text(prompts)
        uncond_embeddings_hidden_states, uncond_embeddings_class_lables, uncond_boolean_prompt_mask = model.encode_text([""], negative=True, save_compute=save_compute, cond_length=text_embeddings_class_labels.shape[1] if text_embeddings_class_labels is not None else None)
    else: uncond_embeddings_hidden_states, uncond_embeddings_class_lables, uncond_boolean_prompt_mask = model.encode_text([""], negative=True, save_compute=False)

    timesteps = model.model.scheduler.timesteps.to(model.device)
    variance_noise_shape = model.get_noise_shape(x0, num_inference_steps)

    if type(etas) in [int, float]: etas = [etas]*model.model.scheduler.num_inference_steps

    xts = model.sample_xts_from_x0(x0, num_inference_steps=num_inference_steps)
    zs = torch.zeros(size=variance_noise_shape, device=model.device)
    extra_info = [None] * len(zs)

    if timesteps[0].dtype == torch.int64: t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
    elif timesteps[0].dtype == torch.float32: t_to_idx = {float(v): k for k, v in enumerate(timesteps)}

    xt = x0
    model.setup_extra_inputs(xt, init_timestep=timesteps[0], audio_end_in_s=duration, save_compute=save_compute and prompts[0] != "")

    for t in tqdm.tqdm(timesteps, desc=translations["inverting"], ncols=100, unit="a"):
        idx = num_inference_steps - t_to_idx[int(t) if timesteps[0].dtype == torch.int64 else float(t)] - 1
        xt = xts[idx + 1][None]
        xt_inp = model.model.scheduler.scale_model_input(xt, t).to(torch.float16 if config.is_half else torch.float32)

        with torch.no_grad():
            if save_compute and prompts[0] != "":
                comb_out, _, _ = model.unet_forward(xt_inp.expand(2, -1, -1, -1) if hasattr(model.model, 'unet') else xt_inp.expand(2, -1, -1), timestep=t, encoder_hidden_states=torch.cat([uncond_embeddings_hidden_states, text_embeddings_hidden_states], dim=0) if uncond_embeddings_hidden_states is not None else None, class_labels=torch.cat([uncond_embeddings_class_lables, text_embeddings_class_labels], dim=0) if uncond_embeddings_class_lables is not None else None, encoder_attention_mask=torch.cat([uncond_boolean_prompt_mask, text_embeddings_boolean_prompt_mask], dim=0) if uncond_boolean_prompt_mask is not None else None)
                out, cond_out = comb_out.sample.chunk(2, dim=0)
            else:
                out = model.unet_forward(xt_inp, timestep=t, encoder_hidden_states=uncond_embeddings_hidden_states, class_labels=uncond_embeddings_class_lables, encoder_attention_mask=uncond_boolean_prompt_mask)[0].sample
                if len(prompts) > 1 or prompts[0] != "": cond_out = model.unet_forward(xt_inp, timestep=t, encoder_hidden_states=text_embeddings_hidden_states, class_labels=text_embeddings_class_labels, encoder_attention_mask=text_embeddings_boolean_prompt_mask)[0].sample

        if len(prompts) > 1 or prompts[0] != "": noise_pred = out + (cfg_scales[0] * (cond_out - out)).sum(axis=0).unsqueeze(0)
        else: noise_pred = out

        xtm1 = xts[idx][None]
        z, xtm1, extra = model.get_zs_from_xts(xt, xtm1, noise_pred, t, eta=etas[idx], numerical_fix=numerical_fix, first_order=first_order)
        zs[idx] = z
        xts[idx] = xtm1
        extra_info[idx] = extra

    if zs is not None: zs[0] = torch.zeros_like(zs[0])
    return xt, zs, xts, extra_info

def inversion_reverse_process(model, xT, tstart, etas = 0, prompts = [""], neg_prompts = [""], cfg_scales = None, zs = None, duration = None, first_order = False, extra_info = None, save_compute = True):
    text_embeddings_hidden_states, text_embeddings_class_labels, text_embeddings_boolean_prompt_mask = model.encode_text(prompts)
    uncond_embeddings_hidden_states, uncond_embeddings_class_lables, uncond_boolean_prompt_mask = model.encode_text(neg_prompts, negative=True, save_compute=save_compute, cond_length=text_embeddings_class_labels.shape[1] if text_embeddings_class_labels is not None else None)
    xt = xT[tstart.max()].unsqueeze(0)

    if etas is None: etas = 0
    if type(etas) in [int, float]: etas = [etas]*model.model.scheduler.num_inference_steps
    
    assert len(etas) == model.model.scheduler.num_inference_steps
    timesteps = model.model.scheduler.timesteps.to(model.device)

    if timesteps[0].dtype == torch.int64: t_to_idx = {int(v): k for k, v in enumerate(timesteps[-zs.shape[0]:])}
    elif timesteps[0].dtype == torch.float32: t_to_idx = {float(v): k for k, v in enumerate(timesteps[-zs.shape[0]:])}

    model.setup_extra_inputs(xt, extra_info=extra_info, init_timestep=timesteps[-zs.shape[0]], audio_end_in_s=duration, save_compute=save_compute)

    for t in tqdm.tqdm(timesteps[-zs.shape[0]:], desc=translations["editing"], ncols=100, unit="a"):
        idx = model.model.scheduler.num_inference_steps - t_to_idx[int(t) if timesteps[0].dtype == torch.int64 else float(t)] - (model.model.scheduler.num_inference_steps - zs.shape[0] + 1)
        xt_inp = model.model.scheduler.scale_model_input(xt, t).to(torch.float16 if config.is_half else torch.float32)

        with torch.no_grad():
            if save_compute:
                comb_out, _, _ = model.unet_forward(xt_inp.expand(2, -1, -1, -1) if hasattr(model.model, 'unet') else xt_inp.expand(2, -1, -1), timestep=t, encoder_hidden_states=torch.cat([uncond_embeddings_hidden_states, text_embeddings_hidden_states], dim=0) if uncond_embeddings_hidden_states is not None else None, class_labels=torch.cat([uncond_embeddings_class_lables, text_embeddings_class_labels], dim=0) if uncond_embeddings_class_lables is not None else None, encoder_attention_mask=torch.cat([uncond_boolean_prompt_mask, text_embeddings_boolean_prompt_mask], dim=0) if uncond_boolean_prompt_mask is not None else None)
                uncond_out, cond_out = comb_out.sample.chunk(2, dim=0)
            else:
                uncond_out = model.unet_forward(xt_inp, timestep=t, encoder_hidden_states=uncond_embeddings_hidden_states, class_labels=uncond_embeddings_class_lables, encoder_attention_mask=uncond_boolean_prompt_mask)[0].sample
                cond_out = model.unet_forward(xt_inp, timestep=t, encoder_hidden_states=text_embeddings_hidden_states, class_labels=text_embeddings_class_labels, encoder_attention_mask=text_embeddings_boolean_prompt_mask)[0].sample

        z = zs[idx] if zs is not None else None
        noise_pred = uncond_out + (cfg_scales[0] * (cond_out - uncond_out)).sum(axis=0).unsqueeze(0)
        xt = model.reverse_step_with_custom_noise(noise_pred, t, xt, variance_noise=z.unsqueeze(0), eta=etas[idx], first_order=first_order)

    return xt, zs

if __name__ == "__main__": main()