File size: 22,556 Bytes
96134ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
import os
import sys
import math
import torch
import inspect
import functools

sys.path.append(os.getcwd())

from main.library.speaker_diarization.speechbrain import MAIN_PROC_ONLY, is_distributed_initialized, main_process_only

KEYS_MAPPING = {".mutihead_attn": ".multihead_attn",  ".convs_intermedite": ".convs_intermediate"}

def map_old_state_dict_weights(state_dict, mapping):
    for replacement_old, replacement_new in mapping.items():
        for old_key in list(state_dict.keys()):
            if replacement_old in old_key: state_dict[old_key.replace(replacement_old, replacement_new)] = state_dict.pop(old_key)

    return state_dict

def hook_on_loading_state_dict_checkpoint(state_dict):
    return map_old_state_dict_weights(state_dict, KEYS_MAPPING)

def torch_patched_state_dict_load(path, device="cpu"):
    return hook_on_loading_state_dict_checkpoint(torch.load(path, map_location=device))

@main_process_only
def torch_save(obj, path):
    state_dict = obj.state_dict()
    torch.save(state_dict, path)

def torch_recovery(obj, path, end_of_epoch):
    del end_of_epoch  

    state_dict = torch_patched_state_dict_load(path, "cpu")
    try:
        obj.load_state_dict(state_dict, strict=True)
    except TypeError:
        obj.load_state_dict(state_dict)

def torch_parameter_transfer(obj, path):
    incompatible_keys = obj.load_state_dict(torch_patched_state_dict_load(path, "cpu"), strict=False)

    for missing_key in incompatible_keys.missing_keys:
        pass
    for unexpected_key in incompatible_keys.unexpected_keys:
        pass

WEAKREF_MARKER = "WEAKREF"

def _cycliclrsaver(obj, path):
    state_dict = obj.state_dict()
    if state_dict.get("_scale_fn_ref") is not None: state_dict["_scale_fn_ref"] = WEAKREF_MARKER

    torch.save(state_dict, path)

def _cycliclrloader(obj, path, end_of_epoch):
    del end_of_epoch  

    try:
        obj.load_state_dict(torch.load(path, map_location="cpu"), strict=True)
    except TypeError:
        obj.load_state_dict(torch.load(path, map_location="cpu"))

DEFAULT_LOAD_HOOKS = {torch.nn.Module: torch_recovery, torch.optim.Optimizer: torch_recovery, torch.optim.lr_scheduler.ReduceLROnPlateau: torch_recovery, torch.cuda.amp.grad_scaler.GradScaler: torch_recovery}
DEFAULT_SAVE_HOOKS = { torch.nn.Module: torch_save, torch.optim.Optimizer: torch_save, torch.optim.lr_scheduler.ReduceLROnPlateau: torch_save, torch.cuda.amp.grad_scaler.GradScaler: torch_save}
DEFAULT_LOAD_HOOKS[torch.optim.lr_scheduler.LRScheduler] = torch_recovery
DEFAULT_SAVE_HOOKS[torch.optim.lr_scheduler.LRScheduler] = torch_save
DEFAULT_TRANSFER_HOOKS = {torch.nn.Module: torch_parameter_transfer}
DEFAULT_SAVE_HOOKS[torch.optim.lr_scheduler.CyclicLR] = _cycliclrsaver
DEFAULT_LOAD_HOOKS[torch.optim.lr_scheduler.CyclicLR] = _cycliclrloader

def register_checkpoint_hooks(cls, save_on_main_only=True):
    global DEFAULT_LOAD_HOOKS, DEFAULT_SAVE_HOOKS, DEFAULT_TRANSFER_HOOKS

    for name, method in cls.__dict__.items():
        if hasattr(method, "_speechbrain_saver"): DEFAULT_SAVE_HOOKS[cls] = main_process_only(method) if save_on_main_only else method
        if hasattr(method, "_speechbrain_loader"): DEFAULT_LOAD_HOOKS[cls] = method
        if hasattr(method, "_speechbrain_transfer"): DEFAULT_TRANSFER_HOOKS[cls] = method
        
    return cls

def mark_as_saver(method):
    sig = inspect.signature(method)

    try:
        sig.bind(object(), os.path.join("testpath"))
    except TypeError:
        raise TypeError
    
    method._speechbrain_saver = True
    return method

def mark_as_transfer(method):
    sig = inspect.signature(method)
    
    try:
        sig.bind(object(), os.path.join("testpath"))
    except TypeError:
        raise TypeError
    
    method._speechbrain_transfer = True
    return method

def mark_as_loader(method):
    sig = inspect.signature(method)

    try:
        sig.bind(object(), os.path.join("testpath"), True)
    except TypeError:
        raise TypeError
    
    method._speechbrain_loader = True
    return method

def ddp_all_reduce(communication_object, reduce_op):
    if MAIN_PROC_ONLY >= 1 or not is_distributed_initialized(): return communication_object
    torch.distributed.all_reduce(communication_object, op=reduce_op)

    return communication_object

def fwd_default_precision(fwd = None, cast_inputs = torch.float32):
    if fwd is None: return functools.partial(fwd_default_precision, cast_inputs=cast_inputs)

    wrapped_fwd = torch.cuda.amp.custom_fwd(fwd, cast_inputs=cast_inputs)

    @functools.wraps(fwd)
    def wrapper(*args, force_allow_autocast = False, **kwargs):
        return fwd(*args, **kwargs) if force_allow_autocast else wrapped_fwd(*args, **kwargs)

    return wrapper

def spectral_magnitude(stft, power = 1, log = False, eps = 1e-14):
    spectr = stft.pow(2).sum(-1)

    if power < 1: spectr = spectr + eps
    spectr = spectr.pow(power)

    if log: return torch.log(spectr + eps)
    return spectr

class Filterbank(torch.nn.Module):
    def __init__(self, n_mels=40, log_mel=True, filter_shape="triangular", f_min=0, f_max=8000, n_fft=400, sample_rate=16000, power_spectrogram=2, amin=1e-10, ref_value=1.0, top_db=80.0, param_change_factor=1.0, param_rand_factor=0.0, freeze=True):
        super().__init__()
        self.n_mels = n_mels
        self.log_mel = log_mel
        self.filter_shape = filter_shape
        self.f_min = f_min
        self.f_max = f_max
        self.n_fft = n_fft
        self.sample_rate = sample_rate
        self.power_spectrogram = power_spectrogram
        self.amin = amin
        self.ref_value = ref_value
        self.top_db = top_db
        self.freeze = freeze
        self.n_stft = self.n_fft // 2 + 1
        self.db_multiplier = math.log10(max(self.amin, self.ref_value))
        self.device_inp = torch.device("cpu")
        self.param_change_factor = param_change_factor
        self.param_rand_factor = param_rand_factor
        self.multiplier = 10 if self.power_spectrogram == 2 else 20

        hz = self._to_hz(torch.linspace(self._to_mel(self.f_min), self._to_mel(self.f_max), self.n_mels + 2))

        band = hz[1:] - hz[:-1]
        self.band = band[:-1]
        self.f_central = hz[1:-1]

        if not self.freeze:
            self.f_central = torch.nn.Parameter(self.f_central / (self.sample_rate * self.param_change_factor))
            self.band = torch.nn.Parameter(self.band / (self.sample_rate * self.param_change_factor))

        self.all_freqs_mat = torch.linspace(0, self.sample_rate // 2, self.n_stft).repeat(self.f_central.shape[0], 1)

    def forward(self, spectrogram):
        f_central_mat = self.f_central.repeat(self.all_freqs_mat.shape[1], 1).transpose(0, 1)
        band_mat = self.band.repeat(self.all_freqs_mat.shape[1], 1).transpose(0, 1)

        if not self.freeze:
            f_central_mat = f_central_mat * (self.sample_rate * self.param_change_factor * self.param_change_factor)
            band_mat = band_mat * (self.sample_rate * self.param_change_factor * self.param_change_factor)
        elif self.param_rand_factor != 0 and self.training:
            rand_change = (1.0 + torch.rand(2) * 2 * self.param_rand_factor - self.param_rand_factor)
            f_central_mat = f_central_mat * rand_change[0]
            band_mat = band_mat * rand_change[1]

        fbank_matrix = self._create_fbank_matrix(f_central_mat, band_mat).to(spectrogram.device)
        sp_shape = spectrogram.shape
        if len(sp_shape) == 4: spectrogram = spectrogram.permute(0, 3, 1, 2).reshape(sp_shape[0] * sp_shape[3], sp_shape[1], sp_shape[2])

        fbanks = torch.matmul(spectrogram, fbank_matrix)
        if self.log_mel: fbanks = self._amplitude_to_DB(fbanks)

        if len(sp_shape) == 4:
            fb_shape = fbanks.shape
            fbanks = fbanks.reshape(sp_shape[0], sp_shape[3], fb_shape[1], fb_shape[2]).permute(0, 2, 3, 1)

        return fbanks

    @staticmethod
    def _to_mel(hz):
        return 2595 * math.log10(1 + hz / 700)

    @staticmethod
    def _to_hz(mel):
        return 700 * (10 ** (mel / 2595) - 1)

    def _triangular_filters(self, all_freqs, f_central, band):
        slope = (all_freqs - f_central) / band
        return torch.max(torch.zeros(1, device=self.device_inp), torch.min(slope + 1.0, -slope + 1.0)).transpose(0, 1)

    def _rectangular_filters(self, all_freqs, f_central, band):
        left_side = right_size = all_freqs.ge(f_central - band)
        right_size = all_freqs.le(f_central + band)

        return (left_side * right_size).float().transpose(0, 1)

    def _gaussian_filters(self, all_freqs, f_central, band, smooth_factor=torch.tensor(2)):
        return torch.exp(-0.5 * ((all_freqs - f_central) / (band / smooth_factor)) ** 2).transpose(0, 1)

    def _create_fbank_matrix(self, f_central_mat, band_mat):
        if self.filter_shape == "triangular": fbank_matrix = self._triangular_filters(self.all_freqs_mat, f_central_mat, band_mat)
        elif self.filter_shape == "rectangular": fbank_matrix = self._rectangular_filters(self.all_freqs_mat, f_central_mat, band_mat)
        else: fbank_matrix = self._gaussian_filters(self.all_freqs_mat, f_central_mat, band_mat)

        return fbank_matrix

    def _amplitude_to_DB(self, x):
        x_db = self.multiplier * torch.log10(torch.clamp(x, min=self.amin))
        x_db -= self.multiplier * self.db_multiplier

        return torch.max(x_db, (x_db.amax(dim=(-2, -1)) - self.top_db).view(x_db.shape[0], 1, 1))

class ContextWindow(torch.nn.Module):
    def __init__(self, left_frames=0, right_frames=0):
        super().__init__()
        self.left_frames = left_frames
        self.right_frames = right_frames
        self.context_len = self.left_frames + self.right_frames + 1
        self.kernel_len = 2 * max(self.left_frames, self.right_frames) + 1
        self.kernel = torch.eye(self.context_len, self.kernel_len)

        if self.right_frames > self.left_frames: self.kernel = torch.roll(self.kernel, self.right_frames - self.left_frames, 1)
        self.first_call = True

    def forward(self, x):
        x = x.transpose(1, 2)
        if self.first_call:
            self.first_call = False
            self.kernel = (self.kernel.repeat(x.shape[1], 1, 1).view(x.shape[1] * self.context_len, self.kernel_len).unsqueeze(1))

        or_shape = x.shape
        if len(or_shape) == 4: x = x.reshape(or_shape[0] * or_shape[2], or_shape[1], or_shape[3])

        cw_x = torch.nn.functional.conv1d(x, self.kernel.to(x.device), groups=x.shape[1], padding=max(self.left_frames, self.right_frames))
        if len(or_shape) == 4: cw_x = cw_x.reshape(or_shape[0], cw_x.shape[1], or_shape[2], cw_x.shape[-1])

        return cw_x.transpose(1, 2)

class FilterProperties:
    def __init__(self, window_size = 0, stride = 1, dilation = 1, causal = False):
        self.window_size = window_size
        self.stride = stride
        self.dilation = dilation
        self.causal = causal
        
    def __post_init__(self):
        assert self.window_size > 0
        assert self.stride > 0
        assert (self.dilation > 0)

    @staticmethod
    def pointwise_filter():
        return FilterProperties(window_size=1, stride=1)

    def get_effective_size(self):
        return 1 + ((self.window_size - 1) * self.dilation)

    def get_convolution_padding(self):
        if self.window_size % 2 == 0: raise ValueError
        if self.causal: return self.get_effective_size() - 1

        return (self.get_effective_size() - 1) // 2

    def get_noncausal_equivalent(self):
        if not self.causal: return self
        return FilterProperties(window_size=(self.window_size - 1) * 2 + 1, stride=self.stride, dilation=self.dilation, causal=False)

    def with_on_top(self, other, allow_approximate=True):
        self_size = self.window_size

        if other.window_size % 2 == 0:
            if allow_approximate: other_size = other.window_size + 1
            else: raise ValueError
        else: other_size = other.window_size

        if (self.causal or other.causal) and not (self.causal and other.causal):
            if allow_approximate: return self.get_noncausal_equivalent().with_on_top(other.get_noncausal_equivalent())
            else: raise ValueError

        return FilterProperties(self_size + (self.stride * (other_size - 1)), self.stride * other.stride, self.dilation * other.dilation, self.causal)

class STFT(torch.nn.Module):
    def __init__(self, sample_rate, win_length=25, hop_length=10, n_fft=400, window_fn=torch.hamming_window, normalized_stft=False, center=True, pad_mode="constant", onesided=True):
        super().__init__()
        self.sample_rate = sample_rate
        self.win_length = win_length
        self.hop_length = hop_length
        self.n_fft = n_fft
        self.normalized_stft = normalized_stft
        self.center = center
        self.pad_mode = pad_mode
        self.onesided = onesided
        self.win_length = int(round((self.sample_rate / 1000.0) * self.win_length))
        self.hop_length = int(round((self.sample_rate / 1000.0) * self.hop_length))
        self.window = window_fn(self.win_length)

    def forward(self, x):
        or_shape = x.shape
        if len(or_shape) == 3: x = x.transpose(1, 2).reshape(or_shape[0] * or_shape[2], or_shape[1])

        stft = torch.view_as_real(torch.stft(x, self.n_fft, self.hop_length, self.win_length, self.window.to(x.device), self.center, self.pad_mode, self.normalized_stft, self.onesided, return_complex=True))
        stft = stft.reshape(or_shape[0], or_shape[2], stft.shape[1], stft.shape[2], stft.shape[3]).permute(0, 3, 2, 4, 1) if len(or_shape) == 3 else stft.transpose(2, 1)

        return stft

    def get_filter_properties(self):
        if not self.center: raise ValueError
        return FilterProperties(window_size=self.win_length, stride=self.hop_length)

class Deltas(torch.nn.Module):
    def __init__(self, input_size, window_length=5):
        super().__init__()
        self.n = (window_length - 1) // 2
        self.denom = self.n * (self.n + 1) * (2 * self.n + 1) / 3
        self.register_buffer("kernel", torch.arange(-self.n, self.n + 1, dtype=torch.float32).repeat(input_size, 1, 1),)

    def forward(self, x):
        x = x.transpose(1, 2).transpose(2, -1)
        or_shape = x.shape

        if len(or_shape) == 4: x = x.reshape(or_shape[0] * or_shape[2], or_shape[1], or_shape[3])

        x = torch.nn.functional.pad(x, (self.n, self.n), mode="replicate")
        delta_coeff = (torch.nn.functional.conv1d(x, self.kernel.to(x.device), groups=x.shape[1]) / self.denom)

        if len(or_shape) == 4: delta_coeff = delta_coeff.reshape(or_shape[0], or_shape[1], or_shape[2], or_shape[3])
        return delta_coeff.transpose(1, -1).transpose(2, -1)

class Fbank(torch.nn.Module):
    def __init__(self, deltas=False, context=False, requires_grad=False, sample_rate=16000, f_min=0, f_max=None, n_fft=400, n_mels=40, filter_shape="triangular", param_change_factor=1.0, param_rand_factor=0.0, left_frames=5, right_frames=5, win_length=25, hop_length=10):
        super().__init__()
        self.deltas = deltas
        self.context = context
        self.requires_grad = requires_grad
        if f_max is None: f_max = sample_rate / 2
        self.compute_STFT = STFT(sample_rate=sample_rate,n_fft=n_fft,win_length=win_length,hop_length=hop_length)
        self.compute_fbanks = Filterbank(sample_rate=sample_rate,n_fft=n_fft,n_mels=n_mels,f_min=f_min,f_max=f_max,freeze=not requires_grad,filter_shape=filter_shape,param_change_factor=param_change_factor,param_rand_factor=param_rand_factor)
        self.compute_deltas = Deltas(input_size=n_mels)
        self.context_window = ContextWindow(left_frames=left_frames, right_frames=right_frames)

    @fwd_default_precision(cast_inputs=torch.float32)
    def forward(self, wav):
        fbanks = self.compute_fbanks(spectral_magnitude(self.compute_STFT(wav)))
        if self.deltas:
            delta1 = self.compute_deltas(fbanks)
            fbanks = torch.cat([fbanks, delta1, self.compute_deltas(delta1)], dim=2)

        if self.context: fbanks = self.context_window(fbanks)
        return fbanks

    def get_filter_properties(self):
        return self.compute_STFT.get_filter_properties()

@register_checkpoint_hooks
class InputNormalization(torch.nn.Module):
    def __init__(self, mean_norm=True, std_norm=True, norm_type="global", avg_factor=None, requires_grad=False, update_until_epoch=3):
        super().__init__()
        self.mean_norm = mean_norm
        self.std_norm = std_norm
        self.norm_type = norm_type
        self.avg_factor = avg_factor
        self.requires_grad = requires_grad
        self.glob_mean = torch.tensor([0])
        self.glob_std = torch.tensor([0])
        self.spk_dict_mean = {}
        self.spk_dict_std = {}
        self.spk_dict_count = {}
        self.weight = 1.0
        self.count = 0
        self.eps = 1e-10
        self.update_until_epoch = update_until_epoch

    def forward(self, x, lengths, spk_ids = torch.tensor([]), epoch=0):
        N_batches = x.shape[0]
        current_means, current_stds = [], []

        if self.norm_type == "sentence" or self.norm_type == "speaker": out = torch.empty_like(x)

        for snt_id in range(N_batches):
            actual_size = torch.round(lengths[snt_id] * x.shape[1]).int()
            current_mean, current_std = self._compute_current_stats(x[snt_id, 0:actual_size, ...])

            current_means.append(current_mean)
            current_stds.append(current_std)

            if self.norm_type == "sentence": out[snt_id] = (x[snt_id] - current_mean.data) / current_std.data

            if self.norm_type == "speaker":
                spk_id = int(spk_ids[snt_id][0])

                if self.training:
                    if spk_id not in self.spk_dict_mean:
                        self.spk_dict_mean[spk_id] = current_mean
                        self.spk_dict_std[spk_id] = current_std
                        self.spk_dict_count[spk_id] = 1
                    else:
                        self.spk_dict_count[spk_id] = (self.spk_dict_count[spk_id] + 1)
                        self.weight = (1 / self.spk_dict_count[spk_id]) if self.avg_factor is None else self.avg_factor

                        self.spk_dict_mean[spk_id] = (1 - self.weight) * self.spk_dict_mean[spk_id].to(current_mean) + self.weight * current_mean
                        self.spk_dict_std[spk_id] = (1 - self.weight) * self.spk_dict_std[spk_id].to(current_std) + self.weight * current_std

                        self.spk_dict_mean[spk_id].detach()
                        self.spk_dict_std[spk_id].detach()

                    speaker_mean = self.spk_dict_mean[spk_id].data
                    speaker_std = self.spk_dict_std[spk_id].data
                else:
                    if spk_id in self.spk_dict_mean:
                        speaker_mean = self.spk_dict_mean[spk_id].data
                        speaker_std = self.spk_dict_std[spk_id].data
                    else:
                        speaker_mean = current_mean.data
                        speaker_std = current_std.data

                out[snt_id] = (x[snt_id] - speaker_mean) / speaker_std

        if self.norm_type == "batch" or self.norm_type == "global":
            current_mean = ddp_all_reduce(torch.mean(torch.stack(current_means), dim=0), torch.distributed.ReduceOp.AVG)
            current_std = ddp_all_reduce(torch.mean(torch.stack(current_stds), dim=0), torch.distributed.ReduceOp.AVG)

            if self.norm_type == "batch": out = (x - current_mean.data) / (current_std.data)

            if self.norm_type == "global":
                if self.training:
                    if self.count == 0:
                        self.glob_mean = current_mean
                        self.glob_std = current_std
                    elif epoch is None or epoch < self.update_until_epoch:
                        self.weight = (1 / (self.count + 1)) if self.avg_factor is None else self.avg_factor
                        self.glob_mean = (1 - self.weight) * self.glob_mean.to(current_mean) + self.weight * current_mean
                        self.glob_std = (1 - self.weight) * self.glob_std.to(current_std) + self.weight * current_std

                    self.glob_mean.detach()
                    self.glob_std.detach()
                    self.count = self.count + 1

                out = (x - self.glob_mean.data.to(x)) / (self.glob_std.data.to(x))

        return out

    def _compute_current_stats(self, x):
        current_std = torch.std(x, dim=0).detach().data if self.std_norm else torch.tensor([1.0], device=x.device)
        return torch.mean(x, dim=0).detach().data if self.mean_norm else torch.tensor([0.0], device=x.device), torch.max(current_std, self.eps * torch.ones_like(current_std))

    def _statistics_dict(self):
        state = {}
        state["count"] = self.count
        state["glob_mean"] = self.glob_mean
        state["glob_std"] = self.glob_std
        state["spk_dict_mean"] = self.spk_dict_mean
        state["spk_dict_std"] = self.spk_dict_std
        state["spk_dict_count"] = self.spk_dict_count

        return state

    def _load_statistics_dict(self, state):
        self.count = state["count"]

        if isinstance(state["glob_mean"], int):
            self.glob_mean = state["glob_mean"]
            self.glob_std = state["glob_std"]
        else:
            self.glob_mean = state["glob_mean"]  
            self.glob_std = state["glob_std"]  

        self.spk_dict_mean = {}
        for spk in state["spk_dict_mean"]:
            self.spk_dict_mean[spk] = state["spk_dict_mean"][spk]

        self.spk_dict_std = {}
        for spk in state["spk_dict_std"]:
            self.spk_dict_std[spk] = state["spk_dict_std"][spk] 

        self.spk_dict_count = state["spk_dict_count"]
        return state

    def to(self, device):
        self = super(InputNormalization, self).to(device)
        self.glob_mean = self.glob_mean.to(device)
        self.glob_std = self.glob_std.to(device)

        for spk in self.spk_dict_mean:
            self.spk_dict_mean[spk] = self.spk_dict_mean[spk].to(device)
            self.spk_dict_std[spk] = self.spk_dict_std[spk].to(device)

        return self

    @mark_as_saver
    def _save(self, path):
        torch.save(self._statistics_dict(), path)

    @mark_as_transfer
    @mark_as_loader
    def _load(self, path, end_of_epoch=False):
        del end_of_epoch  
        stats = torch.load(path, map_location="cpu")
        self._load_statistics_dict(stats)