File size: 88,423 Bytes
96134ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
import os
import re
import ssl
import sys
import json
import torch
import codecs
import shutil
import asyncio
import librosa
import logging
import datetime
import platform
import requests
import warnings
import threading
import subprocess
import logging.handlers

import numpy as np
import gradio as gr
import pandas as pd
import soundfile as sf

from time import sleep
from multiprocessing import cpu_count

sys.path.append(os.getcwd())

from main.tools import huggingface
from main.configs.config import Config

ssl._create_default_https_context = ssl._create_unverified_context
logger = logging.getLogger(__name__)
logger.propagate = False

if logger.hasHandlers(): logger.handlers.clear()
else:
    console_handler = logging.StreamHandler()
    console_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
    console_handler.setFormatter(console_formatter)
    console_handler.setLevel(logging.INFO)
    file_handler = logging.handlers.RotatingFileHandler(os.path.join("assets", "logs", "app.log"), maxBytes=5*1024*1024, backupCount=3, encoding='utf-8')
    file_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
    file_handler.setFormatter(file_formatter)
    file_handler.setLevel(logging.DEBUG)
    logger.addHandler(console_handler)
    logger.addHandler(file_handler)
    logger.setLevel(logging.DEBUG)

warnings.filterwarnings("ignore")
for l in ["httpx", "gradio", "uvicorn", "httpcore", "urllib3"]:
    logging.getLogger(l).setLevel(logging.ERROR)

config = Config()
python = sys.executable
translations = config.translations 
configs_json = os.path.join("main", "configs", "config.json")
configs = json.load(open(configs_json, "r"))

os.environ["TORCH_FORCE_NO_WEIGHTS_ONLY_LOAD"] = "1"
os.environ["TORCH_FORCE_WEIGHTS_ONLY_LOAD"] = "0"

if config.device in ["cpu", "mps"]  and configs.get("fp16", False):
    logger.warning(translations["fp16_not_support"])
    configs["fp16"] = config.is_half = False
    with open(configs_json, "w") as f:
        json.dump(configs, f, indent=4)

models, model_options = {}, {}

method_f0 = ["mangio-crepe-full", "crepe-full", "fcpe", "rmvpe", "harvest", "pyin"]
method_f0_full = ["pm", "dio", "mangio-crepe-tiny", "mangio-crepe-small", "mangio-crepe-medium", "mangio-crepe-large", "mangio-crepe-full", "crepe-tiny", "crepe-small", "crepe-medium", "crepe-large", "crepe-full", "fcpe", "fcpe-legacy", "rmvpe", "rmvpe-legacy", "harvest", "yin", "pyin", "swipe"]

embedders_mode = ["fairseq", "onnx", "transformers", "spin"]
embedders_model = ["contentvec_base", "hubert_base", "japanese_hubert_base", "korean_hubert_base", "chinese_hubert_base", "portuguese_hubert_base", "custom"]

paths_for_files = sorted([os.path.abspath(os.path.join(root, f)) for root, _, files in os.walk("audios") for f in files if os.path.splitext(f)[1].lower() in (".wav", ".mp3", ".flac", ".ogg", ".opus", ".m4a", ".mp4", ".aac", ".alac", ".wma", ".aiff", ".webm", ".ac3")])
model_name, index_path, delete_index = sorted(list(model for model in os.listdir(os.path.join("assets", "weights")) if model.endswith((".pth", ".onnx")) and not model.startswith("G_") and not model.startswith("D_"))), sorted([os.path.join(root, name) for root, _, files in os.walk(os.path.join("assets", "logs"), topdown=False) for name in files if name.endswith(".index") and "trained" not in name]), sorted([os.path.join("assets", "logs", f) for f in os.listdir(os.path.join("assets", "logs")) if "mute" not in f and os.path.isdir(os.path.join("assets", "logs", f))])
pretrainedD, pretrainedG, Allpretrained = ([model for model in os.listdir(os.path.join("assets", "models", "pretrained_custom")) if model.endswith(".pth") and "D" in model], [model for model in os.listdir(os.path.join("assets", "models", "pretrained_custom")) if model.endswith(".pth") and "G" in model], [os.path.join("assets", "models", path, model) for path in ["pretrained_v1", "pretrained_v2", "pretrained_custom"] for model in os.listdir(os.path.join("assets", "models", path)) if model.endswith(".pth") and ("D" in model or "G" in model)])

separate_model = sorted([os.path.join("assets", "models", "uvr5", models) for models in os.listdir(os.path.join("assets", "models", "uvr5")) if models.endswith((".th", ".yaml", ".onnx"))])
presets_file = sorted(list(f for f in os.listdir(os.path.join("assets", "presets")) if f.endswith(".json")))
f0_file = sorted([os.path.abspath(os.path.join(root, f)) for root, _, files in os.walk(os.path.join("assets", "f0")) for f in files if f.endswith(".txt")])

language, theme, edgetts, google_tts_voice, mdx_model, uvr_model, font = configs.get("language", "vi-VN"), configs.get("theme", "NoCrypt/miku"), configs.get("edge_tts", ["vi-VN-HoaiMyNeural", "vi-VN-NamMinhNeural"]), configs.get("google_tts_voice", ["vi", "en"]), configs.get("mdx_model", "MDXNET_Main"), (configs.get("demucs_model", "HD_MMI") + configs.get("mdx_model", "MDXNET_Main")), configs.get("font", "https://fonts.googleapis.com/css2?family=Courgette&display=swap")

csv_path = os.path.join("assets", "spreadsheet.csv")
logger.info(config.device)

if "--allow_all_disk" in sys.argv:
    import win32api

    allow_disk = win32api.GetLogicalDriveStrings().split('\x00')[:-1]
else: allow_disk = []

if language == "vi-VN": 
    import gradio.strings
    gradio.strings.en = {"RUNNING_LOCALLY": "* Chạy trên liên kết nội bộ:  {}://{}:{}", "RUNNING_LOCALLY_SSR": "* Chạy trên liên kết nội bộ:  {}://{}:{}, với SSR ⚡ (thử nghiệm, để tắt hãy dùng `ssr=False` trong `launch()`)", "SHARE_LINK_DISPLAY": "* Chạy trên liên kết công khai: {}", "COULD_NOT_GET_SHARE_LINK": "\nKhông thể tạo liên kết công khai. Vui lòng kiểm tra kết nối mạng của bạn hoặc trang trạng thái của chúng tôi: https://status.gradio.app.", "COULD_NOT_GET_SHARE_LINK_MISSING_FILE": "\nKhông thể tạo liên kết công khai. Thiếu tập tin: {}. \n\nVui lòng kiểm tra kết nối internet của bạn. Điều này có thể xảy ra nếu phần mềm chống vi-rút của bạn chặn việc tải xuống tệp này. Bạn có thể cài đặt thủ công bằng cách làm theo các bước sau: \n\n1. Tải xuống tệp này: {}\n2. Đổi tên tệp đã tải xuống thành: {}\n3. Di chuyển tệp đến vị trí này: {}", "COLAB_NO_LOCAL": "Không thể hiển thị giao diện nội bộ trên google colab, liên kết công khai đã được tạo.", "PUBLIC_SHARE_TRUE": "\nĐể tạo một liên kết công khai, hãy đặt `share=True` trong `launch()`.", "MODEL_PUBLICLY_AVAILABLE_URL": "Mô hình được cung cấp công khai tại: {} (có thể mất tới một phút để sử dụng được liên kết)", "GENERATING_PUBLIC_LINK": "Đang tạo liên kết công khai (có thể mất vài giây...):", "BETA_INVITE": "\nCảm ơn bạn đã là người dùng Gradio! Nếu bạn có thắc mắc hoặc phản hồi, vui lòng tham gia máy chủ Discord của chúng tôi và trò chuyện với chúng tôi: https://discord.gg/feTf9x3ZSB", "COLAB_DEBUG_TRUE": "Đã phát hiện thấy sổ tay Colab. Ô này sẽ chạy vô thời hạn để bạn có thể xem lỗi và nhật ký. " "Để tắt, hãy đặt debug=False trong launch().", "COLAB_DEBUG_FALSE": "Đã phát hiện thấy sổ tay Colab. Để hiển thị lỗi trong sổ ghi chép colab, hãy đặt debug=True trong launch()", "COLAB_WARNING": "Lưu ý: việc mở Chrome Inspector có thể làm hỏng bản demo trong sổ tay Colab.", "SHARE_LINK_MESSAGE": "\nLiên kết công khai sẽ hết hạn sau 72 giờ. Để nâng cấp GPU và lưu trữ vĩnh viễn miễn phí, hãy chạy `gradio deploy` từ terminal trong thư mục làm việc để triển khai lên huggingface (https://huggingface.co/spaces)", "INLINE_DISPLAY_BELOW": "Đang tải giao diện bên dưới...", "COULD_NOT_GET_SHARE_LINK_CHECKSUM": "\nKhông thể tạo liên kết công khai. Tổng kiểm tra không khớp cho tập tin: {}."}

if os.path.exists(csv_path): cached_data = pd.read_csv(csv_path) 
else:
    cached_data = pd.read_csv(codecs.decode("uggcf://qbpf.tbbtyr.pbz/fcernqfurrgf/q/1gNHnDeRULtEfz1Yieaw14USUQjWJy0Oq9k0DrCrjApb/rkcbeg?sbezng=pfi&tvq=1977693859", "rot13"))
    cached_data.to_csv(csv_path, index=False)

for _, row in cached_data.iterrows():
    filename = row['Filename']
    url = None

    for value in row.values:
        if isinstance(value, str) and "huggingface" in value:
            url = value
            break

    if url: models[filename] = url



def gr_info(message):
    gr.Info(message, duration=2)
    logger.info(message)

def gr_warning(message):
    gr.Warning(message, duration=2)
    logger.warning(message)

def gr_error(message):
    gr.Error(message=message, duration=6)
    logger.error(message)

def get_gpu_info():
    ngpu = torch.cuda.device_count()
    gpu_infos = [f"{i}: {torch.cuda.get_device_name(i)} ({int(torch.cuda.get_device_properties(i).total_memory / 1024 / 1024 / 1024 + 0.4)} GB)" for i in range(ngpu) if torch.cuda.is_available() or ngpu != 0]
    return "\n".join(gpu_infos) if len(gpu_infos) > 0 else translations["no_support_gpu"]

def change_f0_choices(): 
    f0_file = sorted([os.path.abspath(os.path.join(root, f)) for root, _, files in os.walk(os.path.join("assets", "f0")) for f in files if f.endswith(".txt")])
    return {"value": f0_file[0] if len(f0_file) >= 1 else "", "choices": f0_file, "__type__": "update"}

def change_audios_choices(input_audio): 
    audios = sorted([os.path.abspath(os.path.join(root, f)) for root, _, files in os.walk("audios") for f in files if os.path.splitext(f)[1].lower() in (".wav", ".mp3", ".flac", ".ogg", ".opus", ".m4a", ".mp4", ".aac", ".alac", ".wma", ".aiff", ".webm", ".ac3")])
    return {"value": input_audio if input_audio != "" else (audios[0] if len(audios) >= 1 else ""), "choices": audios, "__type__": "update"}

def change_separate_choices():
    return [{"choices": sorted([os.path.join("assets", "models", "uvr5", models) for models in os.listdir(os.path.join("assets", "models", "uvr5")) if model.endswith((".th", ".yaml", ".onnx"))]), "__type__": "update"}]

def change_models_choices():
    model, index = sorted(list(model for model in os.listdir(os.path.join("assets", "weights")) if model.endswith((".pth", ".onnx")) and not model.startswith("G_") and not model.startswith("D_"))), sorted([os.path.join(root, name) for root, _, files in os.walk(os.path.join("assets", "logs"), topdown=False) for name in files if name.endswith(".index") and "trained" not in name])
    return [{"value": model[0] if len(model) >= 1 else "", "choices": model, "__type__": "update"}, {"value": index[0] if len(index) >= 1 else "", "choices": index, "__type__": "update"}]

def change_allpretrained_choices():
    return [{"choices": sorted([os.path.join("assets", "models", path, model) for path in ["pretrained_v1", "pretrained_v2", "pretrained_custom"] for model in os.listdir(os.path.join("assets", "models", path)) if model.endswith(".pth") and ("D" in model or "G" in model)]), "__type__": "update"}]

def change_pretrained_choices():
    return [{"choices": sorted([model for model in os.listdir(os.path.join("assets", "models", "pretrained_custom")) if model.endswith(".pth") and "D" in model]), "__type__": "update"}, {"choices": sorted([model for model in os.listdir(os.path.join("assets", "models", "pretrained_custom")) if model.endswith(".pth") and "G" in model]), "__type__": "update"}]

def change_choices_del():
    return [{"choices": sorted(list(model for model in os.listdir(os.path.join("assets", "weights")) if model.endswith(".pth") and not model.startswith("G_") and not model.startswith("D_"))), "__type__": "update"}, {"choices": sorted([os.path.join("assets", "logs", f) for f in os.listdir(os.path.join("assets", "logs")) if "mute" not in f and os.path.isdir(os.path.join("assets", "logs", f))]), "__type__": "update"}]

def change_preset_choices():
    return {"value": "", "choices": sorted(list(f for f in os.listdir(os.path.join("assets", "presets")) if f.endswith(".json"))), "__type__": "update"}

def change_tts_voice_choices(google):
    return {"choices": google_tts_voice if google else edgetts, "value": google_tts_voice[0] if google else edgetts[0], "__type__": "update"}

def change_backing_choices(backing, merge):
    if backing or merge: return {"value": False, "interactive": False, "__type__": "update"}
    elif not backing or not merge: return  {"interactive": True, "__type__": "update"}
    else: gr_warning(translations["option_not_valid"])

def change_download_choices(select):
    selects = [False]*10

    if select == translations["download_url"]: selects[0] = selects[1] = selects[2] = True
    elif select == translations["download_from_csv"]:  selects[3] = selects[4] = True
    elif select == translations["search_models"]: selects[5] = selects[6] = True
    elif select == translations["upload"]: selects[9] = True
    else: gr_warning(translations["option_not_valid"])

    return [{"visible": selects[i], "__type__": "update"} for i in range(len(selects))]

def change_download_pretrained_choices(select):
    selects = [False]*8

    if select == translations["download_url"]: selects[0] = selects[1] = selects[2] = True
    elif select == translations["list_model"]: selects[3] = selects[4] = selects[5] = True
    elif select == translations["upload"]: selects[6] = selects[7] = True
    else: gr_warning(translations["option_not_valid"])

    return [{"visible": selects[i], "__type__": "update"} for i in range(len(selects))]

def get_index(model):
    model = os.path.basename(model).split("_")[0]
    return {"value": next((f for f in [os.path.join(root, name) for root, _, files in os.walk(os.path.join("assets", "logs"), topdown=False) for name in files if name.endswith(".index") and "trained" not in name] if model.split(".")[0] in f), ""), "__type__": "update"} if model else None

def index_strength_show(index):
    return {"visible": index != "" and os.path.exists(index), "value": 0.5, "__type__": "update"}

def hoplength_show(method, hybrid_method=None):
    show_hop_length_method = ["mangio-crepe-tiny", "mangio-crepe-small", "mangio-crepe-medium", "mangio-crepe-large", "mangio-crepe-full", "fcpe", "fcpe-legacy", "yin", "pyin"]

    if method in show_hop_length_method: visible = True
    elif method == "hybrid":
        methods_str = re.search("hybrid\[(.+)\]", hybrid_method)
        if methods_str: methods = [method.strip() for method in methods_str.group(1).split("+")]

        for i in methods:
            visible = i in show_hop_length_method
            if visible: break
    else: visible = False
    
    return {"visible": visible, "__type__": "update"}

def visible(value):
    return {"visible": value, "__type__": "update"}

def valueFalse_interactive(inp): 
    return {"value": False, "interactive": inp, "__type__": "update"}

def valueEmpty_visible1(inp1): 
    return {"value": "", "visible": inp1, "__type__": "update"}

def process_input(file_path):
    file_contents = ""

    if not file_path.endswith(".srt"):
        with open(file_path, "r", encoding="utf-8") as file:
            file_contents = file.read()

    gr_info(translations["upload_success"].format(name=translations["text"]))
    return file_contents

def fetch_pretrained_data():
    response = requests.get(codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/wfba/phfgbz_cergenvarq.wfba", "rot13"))
    response.raise_for_status()

    return response.json()

def update_sample_rate_dropdown(model):
    data = fetch_pretrained_data()
    if model != translations["success"]: return {"choices": list(data[model].keys()), "value": list(data[model].keys())[0], "__type__": "update"}

def if_done(done, p):
    while 1:
        if p.poll() is None: sleep(0.5)
        else: break

    done[0] = True

def restart_app():
    global app

    gr_info(translations["15s"])
    os.system("cls" if platform.system() == "Windows" else "clear")
    
    app.close()
    subprocess.run([python, os.path.join("main", "app", "app.py")] + sys.argv[1:])

def change_language(lang):
    configs = json.load(open(configs_json, "r"))
    configs["language"] = lang

    with open(configs_json, "w") as f:
        json.dump(configs, f, indent=4)

    restart_app()

def change_theme(theme):
    with open(configs_json, "r") as f:
        configs = json.load(f)

    configs["theme"] = theme
    with open(configs_json, "w") as f:
        json.dump(configs, f, indent=4)

    restart_app()

def change_font(font):
    with open(configs_json, "r") as f:
        configs = json.load(f)

    configs["font"] = font
    with open(configs_json, "w") as f:
        json.dump(configs, f, indent=4)

    restart_app()

def zip_file(name, pth, index):
    pth_path = os.path.join("assets", "weights", pth)
    if not pth or not os.path.exists(pth_path) or not pth.endswith((".pth", ".onnx")): return gr_warning(translations["provide_file"].format(filename=translations["model"]))

    zip_file_path = os.path.join("assets", "logs", name, name + ".zip")
    gr_info(translations["start"].format(start=translations["zip"]))

    import zipfile
    with zipfile.ZipFile(zip_file_path, 'w') as zipf:
        zipf.write(pth_path, os.path.basename(pth_path))
        if index: zipf.write(index, os.path.basename(index))

    gr_info(translations["success"])
    return {"visible": True, "value": zip_file_path, "__type__": "update"}

def fetch_models_data(search):
    all_table_data = [] 
    page = 1 

    while 1:
        try:
            response = requests.post(url=codecs.decode("uggcf://ibvpr-zbqryf.pbz/srgpu_qngn.cuc", "rot13"), data={"page": page, "search": search})

            if response.status_code == 200:
                table_data = response.json().get("table", "")
                if not table_data.strip(): break  
                all_table_data.append(table_data)
                page += 1
            else:
                logger.debug(f"{translations['code_error']} {response.status_code}")
                break  
        except json.JSONDecodeError:
            logger.debug(translations["json_error"])
            break
        except requests.RequestException as e:
            logger.debug(translations["requests_error"].format(e=e))
            break
    return all_table_data

def search_models(name):
    gr_info(translations["start"].format(start=translations["search"]))
    tables = fetch_models_data(name)

    if len(tables) == 0:
        gr_info(translations["not_found"].format(name=name))
        return [None]*2
    else:
        model_options.clear()
        
        from bs4 import BeautifulSoup

        for table in tables:
            for row in BeautifulSoup(table, "html.parser").select("tr"):
                name_tag, url_tag = row.find("a", {"class": "fs-5"}), row.find("a", {"class": "btn btn-sm fw-bold btn-light ms-0 p-1 ps-2 pe-2"})
                url = url_tag["href"].replace("https://easyaivoice.com/run?url=", "")
                if "huggingface" in url:
                    if name_tag and url_tag: model_options[name_tag.text.replace(".onnx", "").replace(".pth", "").replace(".index", "").replace(".zip", "").replace(" ", "_").replace("(", "").replace(")", "").replace("[", "").replace("]", "").replace(",", "").replace('"', "").replace("'", "").replace("|", "").strip()] = url

        gr_info(translations["found"].format(results=len(model_options)))
        return [{"value": "", "choices": model_options, "interactive": True, "visible": True, "__type__": "update"}, {"value": translations["downloads"], "visible": True, "__type__": "update"}]

def move_files_from_directory(src_dir, dest_weights, dest_logs, model_name):
    for root, _, files in os.walk(src_dir):
        for file in files:
            file_path = os.path.join(root, file)
            if file.endswith(".index"):
                model_log_dir = os.path.join(dest_logs, model_name)
                os.makedirs(model_log_dir, exist_ok=True)

                filepath = os.path.join(model_log_dir, file.replace(' ', '_').replace('(', '').replace(')', '').replace('[', '').replace(']', '').replace(",", "").replace('"', "").replace("'", "").replace("|", "").strip())
                if os.path.exists(filepath): os.remove(filepath)

                shutil.move(file_path, filepath)
            elif file.endswith(".pth") and not file.startswith("D_") and not file.startswith("G_"):
                pth_path = os.path.join(dest_weights, model_name + ".pth")
                if os.path.exists(pth_path): os.remove(pth_path)

                shutil.move(file_path, pth_path)
            elif file.endswith(".onnx") and not file.startswith("D_") and not file.startswith("G_"):
                pth_path = os.path.join(dest_weights, model_name + ".onnx")
                if os.path.exists(pth_path): os.remove(pth_path)

                shutil.move(file_path, pth_path)

def download_url(url):
    import yt_dlp

    if not url: return gr_warning(translations["provide_url"])
    if not os.path.exists("audios"): os.makedirs("audios", exist_ok=True)

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore")
        ydl_opts = {"format": "bestaudio/best", "postprocessors": [{"key": "FFmpegExtractAudio", "preferredcodec": "wav", "preferredquality": "192"}], "quiet": True, "no_warnings": True, "noplaylist": True, "verbose": False}

        gr_info(translations["start"].format(start=translations["download_music"]))

        with yt_dlp.YoutubeDL(ydl_opts) as ydl:
            audio_output = os.path.join("audios", re.sub(r'\s+', '-', re.sub(r'[^\w\s\u4e00-\u9fff\uac00-\ud7af\u0400-\u04FF\u1100-\u11FF]', '', ydl.extract_info(url, download=False).get('title', 'video')).strip()))
            if os.path.exists(audio_output): shutil.rmtree(audio_output, ignore_errors=True)

            ydl_opts['outtmpl'] = audio_output
            
        with yt_dlp.YoutubeDL(ydl_opts) as ydl: 
            audio_output = audio_output + ".wav"
            if os.path.exists(audio_output): os.remove(audio_output)
            
            ydl.download([url])

        gr_info(translations["success"])
        return [audio_output, audio_output, translations["success"]]

def download_model(url=None, model=None):
    if not url: return gr_warning(translations["provide_url"])
    if not model: return gr_warning(translations["provide_name_is_save"])

    model = model.replace(".onnx", "").replace(".pth", "").replace(".index", "").replace(".zip", "").replace(" ", "_").replace("(", "").replace(")", "").replace("[", "").replace("]", "").replace(",", "").replace('"', "").replace("'", "").replace("|", "").strip()
    url = url.replace("/blob/", "/resolve/").replace("?download=true", "").strip()

    download_dir = os.path.join("download_model")
    weights_dir = os.path.join("assets", "weights")
    logs_dir = os.path.join("assets", "logs")

    if not os.path.exists(download_dir): os.makedirs(download_dir, exist_ok=True)
    if not os.path.exists(weights_dir): os.makedirs(weights_dir, exist_ok=True)
    if not os.path.exists(logs_dir): os.makedirs(logs_dir, exist_ok=True)
    
    try:
        gr_info(translations["start"].format(start=translations["download"]))

        if url.endswith(".pth"): huggingface.HF_download_file(url, os.path.join(weights_dir, f"{model}.pth"))
        elif url.endswith(".onnx"): huggingface.HF_download_file(url, os.path.join(weights_dir, f"{model}.onnx"))
        elif url.endswith(".index"):
            model_log_dir = os.path.join(logs_dir, model)
            os.makedirs(model_log_dir, exist_ok=True)

            huggingface.HF_download_file(url, os.path.join(model_log_dir, f"{model}.index"))
        elif url.endswith(".zip"):
            output_path = huggingface.HF_download_file(url, os.path.join(download_dir, model + ".zip"))
            shutil.unpack_archive(output_path, download_dir)

            move_files_from_directory(download_dir, weights_dir, logs_dir, model)
        else:
            if "drive.google.com" in url or "drive.usercontent.google.com" in url:
                file_id = None

                from main.tools import gdown

                if "/file/d/" in url: file_id = url.split("/d/")[1].split("/")[0]
                elif "open?id=" in url: file_id = url.split("open?id=")[1].split("/")[0]
                elif "/download?id=" in url: file_id = url.split("/download?id=")[1].split("&")[0]
                
                if file_id:
                    file = gdown.gdown_download(id=file_id, output=download_dir)
                    if file.endswith(".zip"): shutil.unpack_archive(file, download_dir)

                    move_files_from_directory(download_dir, weights_dir, logs_dir, model)
            elif "mega.nz" in url:
                from main.tools import meganz
                
                meganz.mega_download_url(url, download_dir)

                file_download = next((f for f in os.listdir(download_dir)), None)
                if file_download.endswith(".zip"): shutil.unpack_archive(os.path.join(download_dir, file_download), download_dir)

                move_files_from_directory(download_dir, weights_dir, logs_dir, model)
            elif "mediafire.com" in url:
                from main.tools import mediafire

                file = mediafire.Mediafire_Download(url, download_dir)
                if file.endswith(".zip"): shutil.unpack_archive(file, download_dir)

                move_files_from_directory(download_dir, weights_dir, logs_dir, model)
            elif "pixeldrain.com" in url:
                from main.tools import pixeldrain

                file = pixeldrain.pixeldrain(url, download_dir)
                if file.endswith(".zip"): shutil.unpack_archive(file, download_dir)

                move_files_from_directory(download_dir, weights_dir, logs_dir, model)
            else:
                gr_warning(translations["not_support_url"])
                return translations["not_support_url"]
        
        gr_info(translations["success"])
        return translations["success"]
    except Exception as e:
        gr_error(message=translations["error_occurred"].format(e=e))
        logger.debug(e)
        return translations["error_occurred"].format(e=e)
    finally:
        shutil.rmtree(download_dir, ignore_errors=True)

def save_drop_model(dropbox):
    weight_folder = os.path.join("assets", "weights")
    logs_folder = os.path.join("assets", "logs")
    save_model_temp = os.path.join("save_model_temp")

    if not os.path.exists(weight_folder): os.makedirs(weight_folder, exist_ok=True)
    if not os.path.exists(logs_folder): os.makedirs(logs_folder, exist_ok=True)
    if not os.path.exists(save_model_temp): os.makedirs(save_model_temp, exist_ok=True)

    shutil.move(dropbox, save_model_temp)

    try:
        file_name = os.path.basename(dropbox)

        if file_name.endswith(".pth") and file_name.endswith(".onnx") and file_name.endswith(".index"): gr_warning(translations["not_model"])
        else:    
            if file_name.endswith(".zip"):
                shutil.unpack_archive(os.path.join(save_model_temp, file_name), save_model_temp)
                move_files_from_directory(save_model_temp, weight_folder, logs_folder, file_name.replace(".zip", ""))
            elif file_name.endswith((".pth", ".onnx")): 
                output_file = os.path.join(weight_folder, file_name)
                if os.path.exists(output_file): os.remove(output_file)
                
                shutil.move(os.path.join(save_model_temp, file_name), output_file)
            elif file_name.endswith(".index"):
                def extract_name_model(filename):
                    match = re.search(r"([A-Za-z]+)(?=_v|\.|$)", filename)
                    return match.group(1) if match else None
                
                model_logs = os.path.join(logs_folder, extract_name_model(file_name))
                if not os.path.exists(model_logs): os.makedirs(model_logs, exist_ok=True)
                shutil.move(os.path.join(save_model_temp, file_name), model_logs)
            else: 
                gr_warning(translations["unable_analyze_model"])
                return None
        
        gr_info(translations["upload_success"].format(name=translations["model"]))
        return None
    except Exception as e:
        gr_error(message=translations["error_occurred"].format(e=e))
        logger.debug(e)
        return None
    finally:
        shutil.rmtree(save_model_temp, ignore_errors=True)

def download_pretrained_model(choices, model, sample_rate):
    pretraineds_custom_path = os.path.join("assets", "models", "pretrained_custom")
    if choices == translations["list_model"]:
        paths = fetch_pretrained_data()[model][sample_rate]

        if not os.path.exists(pretraineds_custom_path): os.makedirs(pretraineds_custom_path, exist_ok=True)
        url = codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/cergenvarq_phfgbz/", "rot13") + paths

        gr_info(translations["download_pretrain"])
        file = huggingface.HF_download_file(url.replace("/blob/", "/resolve/").replace("?download=true", "").strip(), os.path.join(pretraineds_custom_path, paths))

        if file.endswith(".zip"): 
            shutil.unpack_archive(file, pretraineds_custom_path)
            os.remove(file)

        gr_info(translations["success"])
        return translations["success"]
    elif choices == translations["download_url"]:
        if not model: return gr_warning(translations["provide_pretrain"].format(dg="D"))
        if not sample_rate: return gr_warning(translations["provide_pretrain"].format(dg="G"))

        gr_info(translations["download_pretrain"])

        huggingface.HF_download_file(model.replace("/blob/", "/resolve/").replace("?download=true", "").strip(), pretraineds_custom_path)
        huggingface.HF_download_file(sample_rate.replace("/blob/", "/resolve/").replace("?download=true", "").strip(), pretraineds_custom_path)

        gr_info(translations["success"])
        return translations["success"]

def fushion_model_pth(name, pth_1, pth_2, ratio):
    if not name.endswith(".pth"): name = name + ".pth"

    if not pth_1 or not os.path.exists(pth_1) or not pth_1.endswith(".pth"):
        gr_warning(translations["provide_file"].format(filename=translations["model"] + " 1"))
        return [translations["provide_file"].format(filename=translations["model"] + " 1"), None]
    
    if not pth_2 or not os.path.exists(pth_2) or not pth_2.endswith(".pth"):
        gr_warning(translations["provide_file"].format(filename=translations["model"] + " 2"))
        return [translations["provide_file"].format(filename=translations["model"] + " 2"), None]
    
    from collections import OrderedDict

    def extract(ckpt):
        a = ckpt["model"]
        opt = OrderedDict()
        opt["weight"] = {}

        for key in a.keys():
            if "enc_q" in key: continue

            opt["weight"][key] = a[key]

        return opt
    
    try:
        ckpt1 = torch.load(pth_1, map_location="cpu")
        ckpt2 = torch.load(pth_2, map_location="cpu")

        if ckpt1["sr"] != ckpt2["sr"]: 
            gr_warning(translations["sr_not_same"])
            return [translations["sr_not_same"], None]

        cfg = ckpt1["config"]
        cfg_f0 = ckpt1["f0"]
        cfg_version = ckpt1["version"]
        cfg_sr = ckpt1["sr"]

        vocoder = ckpt1.get("vocoder", "Default")

        ckpt1 = extract(ckpt1) if "model" in ckpt1 else ckpt1["weight"]
        ckpt2 = extract(ckpt2) if "model" in ckpt2 else ckpt2["weight"]

        if sorted(list(ckpt1.keys())) != sorted(list(ckpt2.keys())): 
            gr_warning(translations["architectures_not_same"])
            return [translations["architectures_not_same"], None]
         
        gr_info(translations["start"].format(start=translations["fushion_model"]))

        opt = OrderedDict()
        opt["weight"] = {}

        for key in ckpt1.keys():
            if key == "emb_g.weight" and ckpt1[key].shape != ckpt2[key].shape:
                min_shape0 = min(ckpt1[key].shape[0], ckpt2[key].shape[0])
                opt["weight"][key] = (ratio * (ckpt1[key][:min_shape0].float()) + (1 - ratio) * (ckpt2[key][:min_shape0].float())).half()
            else: opt["weight"][key] = (ratio * (ckpt1[key].float()) + (1 - ratio) * (ckpt2[key].float())).half()

        opt["config"] = cfg
        opt["sr"] = cfg_sr
        opt["f0"] = cfg_f0
        opt["version"] = cfg_version
        opt["infos"] = translations["model_fushion_info"].format(name=name, pth_1=pth_1, pth_2=pth_2, ratio=ratio)
        opt["vocoder"] = vocoder

        output_model = os.path.join("assets", "weights")
        if not os.path.exists(output_model): os.makedirs(output_model, exist_ok=True)

        torch.save(opt, os.path.join(output_model, name))

        gr_info(translations["success"])
        return [translations["success"], os.path.join(output_model, name)]
    except Exception as e:
        gr_error(message=translations["error_occurred"].format(e=e))
        logger.debug(e)
        return [e, None]

def fushion_model(name, path_1, path_2, ratio):
    if not name:
        gr_warning(translations["provide_name_is_save"]) 
        return [translations["provide_name_is_save"], None]

    if path_1.endswith(".pth") and path_2.endswith(".pth"): return fushion_model_pth(name.replace(".onnx", ".pth"), path_1, path_2, ratio)
    else:
        gr_warning(translations["format_not_valid"])
        return [None, None]
    
def onnx_export(model_path):
    from main.library.algorithm.onnx_export import onnx_exporter
    
    if not model_path.endswith(".pth"): model_path + ".pth"
    if not model_path or not os.path.exists(model_path) or not model_path.endswith(".pth"):
        gr_warning(translations["provide_file"].format(filename=translations["model"]))
        return [None, translations["provide_file"].format(filename=translations["model"])]
    
    try:
        gr_info(translations["start_onnx_export"])
        output = onnx_exporter(model_path, model_path.replace(".pth", ".onnx"), is_half=config.is_half, device=config.device)

        gr_info(translations["success"])
        return [output, translations["success"]]
    except Exception as e:
        return [None, e]
    
def model_info(path):
    if not path or not os.path.exists(path) or os.path.isdir(path) or not path.endswith((".pth", ".onnx")): return gr_warning(translations["provide_file"].format(filename=translations["model"]))
    
    def prettify_date(date_str):
        if date_str == translations["not_found_create_time"]: return None

        try:
            return datetime.datetime.strptime(date_str, "%Y-%m-%dT%H:%M:%S.%f").strftime("%Y-%m-%d %H:%M:%S")
        except ValueError as e:
            logger.debug(e)
            return translations["format_not_valid"]
    
    if path.endswith(".pth"): model_data = torch.load(path, map_location=torch.device("cpu"))
    else:
        import onnx
        
        model = onnx.load(path)
        model_data = None

        for prop in model.metadata_props:
            if prop.key == "model_info":
                model_data = json.loads(prop.value)
                break

    gr_info(translations["read_info"])

    epochs = model_data.get("epoch", None)
    if epochs is None: 
        epochs = model_data.get("info", None)
        try:
            epoch = epochs.replace("epoch", "").replace("e", "").isdigit()
            if epoch and epochs is None: epochs = translations["not_found"].format(name=translations["epoch"])
        except: 
            pass

    steps = model_data.get("step", translations["not_found"].format(name=translations["step"]))
    sr = model_data.get("sr", translations["not_found"].format(name=translations["sr"]))
    f0 = model_data.get("f0", translations["not_found"].format(name=translations["f0"]))
    version = model_data.get("version", translations["not_found"].format(name=translations["version"]))
    creation_date = model_data.get("creation_date", translations["not_found_create_time"])
    model_hash = model_data.get("model_hash", translations["not_found"].format(name="model_hash"))
    pitch_guidance = translations["trained_f0"] if f0 else translations["not_f0"]
    creation_date_str = prettify_date(creation_date) if creation_date else translations["not_found_create_time"]
    model_name = model_data.get("model_name", translations["unregistered"])
    model_author = model_data.get("author", translations["not_author"])
    vocoder = model_data.get("vocoder", "Default")

    gr_info(translations["success"])
    return translations["model_info"].format(model_name=model_name, model_author=model_author, epochs=epochs, steps=steps, version=version, sr=sr, pitch_guidance=pitch_guidance, model_hash=model_hash, creation_date_str=creation_date_str, vocoder=vocoder)

def audio_effects(input_path, output_path, resample, resample_sr, chorus_depth, chorus_rate, chorus_mix, chorus_delay, chorus_feedback, distortion_drive, reverb_room_size, reverb_damping, reverb_wet_level, reverb_dry_level, reverb_width, reverb_freeze_mode, pitch_shift, delay_seconds, delay_feedback, delay_mix, compressor_threshold, compressor_ratio, compressor_attack_ms, compressor_release_ms, limiter_threshold, limiter_release, gain_db, bitcrush_bit_depth, clipping_threshold, phaser_rate_hz, phaser_depth, phaser_centre_frequency_hz, phaser_feedback, phaser_mix, bass_boost_db, bass_boost_frequency, treble_boost_db, treble_boost_frequency, fade_in_duration, fade_out_duration, export_format, chorus, distortion, reverb, delay, compressor, limiter, gain, bitcrush, clipping, phaser, treble_bass_boost, fade_in_out, audio_combination, audio_combination_input):
    if not input_path or not os.path.exists(input_path) or os.path.isdir(input_path): 
        gr_warning(translations["input_not_valid"])
        return None
        
    if not output_path:
        gr_warning(translations["output_not_valid"])
        return None
    
    if os.path.isdir(output_path): output_path = os.path.join(output_path, f"audio_effects.{export_format}")
    output_dir = os.path.dirname(output_path) or output_path

    if not os.path.exists(output_dir): os.makedirs(output_dir, exist_ok=True)
    if os.path.exists(output_path): os.remove(output_path)
    
    gr_info(translations["start"].format(start=translations["apply_effect"]))
    subprocess.run([python, "main/inference/audio_effects.py", "--input_path", input_path, "--output_path", output_path, "--resample", str(resample), "--resample_sr", str(resample_sr), "--chorus_depth", str(chorus_depth), "--chorus_rate", str(chorus_rate), "--chorus_mix", str(chorus_mix), "--chorus_delay", str(chorus_delay), "--chorus_feedback", str(chorus_feedback), "--drive_db", str(distortion_drive), "--reverb_room_size", str(reverb_room_size), "--reverb_damping", str(reverb_damping), "--reverb_wet_level", str(reverb_wet_level), "--reverb_dry_level", str(reverb_dry_level), "--reverb_width", str(reverb_width), "--reverb_freeze_mode", str(reverb_freeze_mode), "--pitch_shift", str(pitch_shift), "--delay_seconds", str(delay_seconds), "--delay_feedback", str(delay_feedback), "--delay_mix", str(delay_mix), "--compressor_threshold", str(compressor_threshold), "--compressor_ratio", str(compressor_ratio), "--compressor_attack_ms", str(compressor_attack_ms), "--compressor_release_ms", str(compressor_release_ms), "--limiter_threshold", str(limiter_threshold), "--limiter_release", str(limiter_release), "--gain_db", str(gain_db), "--bitcrush_bit_depth", str(bitcrush_bit_depth), "--clipping_threshold", str(clipping_threshold), "--phaser_rate_hz", str(phaser_rate_hz), "--phaser_depth", str(phaser_depth), "--phaser_centre_frequency_hz", str(phaser_centre_frequency_hz), "--phaser_feedback", str(phaser_feedback), "--phaser_mix", str(phaser_mix), "--bass_boost_db", str(bass_boost_db), "--bass_boost_frequency", str(bass_boost_frequency), "--treble_boost_db", str(treble_boost_db), "--treble_boost_frequency", str(treble_boost_frequency), "--fade_in_duration", str(fade_in_duration), "--fade_out_duration", str(fade_out_duration), "--export_format", export_format, "--chorus", str(chorus), "--distortion", str(distortion), "--reverb", str(reverb), "--pitchshift", str(pitch_shift != 0), "--delay", str(delay), "--compressor", str(compressor), "--limiter", str(limiter), "--gain", str(gain), "--bitcrush", str(bitcrush), "--clipping", str(clipping), "--phaser", str(phaser), "--treble_bass_boost", str(treble_bass_boost), "--fade_in_out", str(fade_in_out), "--audio_combination", str(audio_combination), "--audio_combination_input", audio_combination_input])

    gr_info(translations["success"])
    return output_path.replace("wav", export_format)

def synthesize_tts(prompt, voice, speed, output, pitch, google):
    if not google: 
        from edge_tts import Communicate

        asyncio.run(Communicate(text=prompt, voice=voice, rate=f"+{speed}%" if speed >= 0 else f"{speed}%", pitch=f"+{pitch}Hz" if pitch >= 0 else f"{pitch}Hz").save(output))
    else: 
        response = requests.get(codecs.decode("uggcf://genafyngr.tbbtyr.pbz/genafyngr_ggf", "rot13"), params={"ie": "UTF-8", "q": prompt, "tl": voice, "ttsspeed": speed, "client": "tw-ob"}, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36"})

        if response.status_code == 200:
            with open(output, "wb") as f:
                f.write(response.content)

            if pitch != 0 or speed != 0:
                y, sr = librosa.load(output, sr=None)

                if pitch != 0: y = librosa.effects.pitch_shift(y, sr=sr, n_steps=pitch)
                if speed != 0: y = librosa.effects.time_stretch(y, rate=speed)

                sf.write(file=output, data=y, samplerate=sr, format=os.path.splitext(os.path.basename(output))[-1].lower().replace('.', ''))
        else: gr_error(f"{response.status_code}, {response.text}")

def time_stretch(y, sr, target_duration):
    rate = (len(y) / sr) / target_duration
    if rate != 1.0: y = librosa.effects.time_stretch(y=y.astype(np.float32), rate=rate)

    n_target = int(round(target_duration * sr))
    return np.pad(y, (0, n_target - len(y))) if len(y) < n_target else y[:n_target]

def pysrttime_to_seconds(t):
    return (t.hours * 60 + t.minutes) * 60 + t.seconds + t.milliseconds / 1000

def srt_tts(srt_file, out_file, voice, rate = 0, sr = 24000, google = False):
    import pysrt
    import tempfile

    subs = pysrt.open(srt_file)
    if not subs: raise ValueError(translations["srt"])

    final_audio = np.zeros(int(round(pysrttime_to_seconds(subs[-1].end) * sr)), dtype=np.float32)

    with tempfile.TemporaryDirectory() as tempdir:
        for idx, seg in enumerate(subs):
            wav_path = os.path.join(tempdir, f"seg_{idx}.wav")
            synthesize_tts(" ".join(seg.text.splitlines()), voice, 0, wav_path, rate, google)

            audio, file_sr = sf.read(wav_path, dtype=np.float32)
            if file_sr != sr: audio = np.interp(np.linspace(0, len(audio) - 1, int(len(audio) * sr / file_sr)), np.arange(len(audio)), audio)
            adjusted = time_stretch(audio, sr, pysrttime_to_seconds(seg.duration))

            start_sample = int(round(pysrttime_to_seconds(seg.start) * sr))
            end_sample = start_sample + adjusted.shape[0]

            if end_sample > final_audio.shape[0]:
                adjusted = adjusted[: final_audio.shape[0] - start_sample]
                end_sample = final_audio.shape[0]

            final_audio[start_sample:end_sample] += adjusted

    sf.write(out_file, final_audio, sr)

def TTS(prompt, voice, speed, output, pitch, google, srt_input):
    if not srt_input: srt_input = ""

    if not prompt and not srt_input.endswith(".srt"):
        gr_warning(translations["enter_the_text"])
        return None
    
    if not voice:
        gr_warning(translations["choose_voice"])
        return None
    
    if not output: 
        gr_warning(translations["output_not_valid"])
        return None
    
    if os.path.isdir(output): output = os.path.join(output, f"tts.wav")
    gr_info(translations["convert"].format(name=translations["text"]))

    output_dir = os.path.dirname(output) or output
    if not os.path.exists(output_dir): os.makedirs(output_dir, exist_ok=True)

    if srt_input.endswith(".srt"): srt_tts(srt_input, output, voice, 0, 24000, google)
    else: synthesize_tts(prompt, voice, speed, output, pitch, google)

    gr_info(translations["success"])
    return output

def separator_music(input, output_audio, format, shifts, segments_size, overlap, clean_audio, clean_strength, denoise, separator_model, kara_model, backing, reverb, backing_reverb, hop_length, batch_size, sample_rate):
    output = os.path.dirname(output_audio) or output_audio

    if not input or not os.path.exists(input) or os.path.isdir(input): 
        gr_warning(translations["input_not_valid"])
        return [None]*4
    
    if not os.path.exists(output): 
        gr_warning(translations["output_not_valid"])
        return [None]*4

    if not os.path.exists(output): os.makedirs(output)
    gr_info(translations["start"].format(start=translations["separator_music"]))

    subprocess.run([python, "main/inference/separator_music.py", "--input_path", input, "--output_path", output, "--format", format, "--shifts", str(shifts), "--segments_size", str(segments_size), "--overlap", str(overlap), "--mdx_hop_length", str(hop_length), "--mdx_batch_size", str(batch_size), "--clean_audio", str(clean_audio), "--clean_strength", str(clean_strength), "--kara_model", kara_model, "--backing", str(backing), "--mdx_denoise", str(denoise), "--reverb", str(reverb), "--backing_reverb", str(backing_reverb), "--model_name", separator_model, "--sample_rate", str(sample_rate)])
    gr_info(translations["success"])

    filename, _ = os.path.splitext(os.path.basename(input))
    output = os.path.join(output, filename)

    return [os.path.join(output, f"Original_Vocals_No_Reverb.{format}") if reverb else os.path.join(output, f"Original_Vocals.{format}"), os.path.join(output, f"Instruments.{format}"), (os.path.join(output, f"Main_Vocals_No_Reverb.{format}") if reverb else os.path.join(output, f"Main_Vocals.{format}") if backing else None), (os.path.join(output, f"Backing_Vocals_No_Reverb.{format}") if backing_reverb else os.path.join(output, f"Backing_Vocals.{format}") if backing else None)] if os.path.isfile(input) else [None]*4

def convert(pitch, filter_radius, index_rate, volume_envelope, protect, hop_length, f0_method, input_path, output_path, pth_path, index_path, f0_autotune, clean_audio, clean_strength, export_format, embedder_model, resample_sr, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file):    
    subprocess.run([python, "main/inference/convert.py", "--pitch", str(pitch), "--filter_radius", str(filter_radius), "--index_rate", str(index_rate), "--volume_envelope", str(volume_envelope), "--protect", str(protect), "--hop_length", str(hop_length), "--f0_method", f0_method, "--input_path", input_path, "--output_path", output_path, "--pth_path", pth_path, "--index_path", index_path if index_path else "", "--f0_autotune", str(f0_autotune), "--clean_audio", str(clean_audio), "--clean_strength", str(clean_strength), "--export_format", export_format, "--embedder_model", embedder_model, "--resample_sr", str(resample_sr), "--split_audio", str(split_audio), "--f0_autotune_strength", str(f0_autotune_strength), "--checkpointing", str(checkpointing), "--f0_onnx", str(onnx_f0_mode), "--embedders_mode", embedders_mode, "--formant_shifting", str(formant_shifting), "--formant_qfrency", str(formant_qfrency), "--formant_timbre", str(formant_timbre), "--f0_file", f0_file])

def convert_audio(clean, autotune, use_audio, use_original, convert_backing, not_merge_backing, merge_instrument, pitch, clean_strength, model, index, index_rate, input, output, format, method, hybrid_method, hop_length, embedders, custom_embedders, resample_sr, filter_radius, volume_envelope, protect, split_audio, f0_autotune_strength, input_audio_name, checkpointing, onnx_f0_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, embedders_mode):
    model_path = os.path.join("assets", "weights", model)

    return_none = [None]*6
    return_none[5] = {"visible": True, "__type__": "update"}

    if not use_audio:
        if merge_instrument or not_merge_backing or convert_backing or use_original:
            gr_warning(translations["turn_on_use_audio"])
            return return_none

    if use_original:
        if convert_backing:
            gr_warning(translations["turn_off_convert_backup"])
            return return_none
        elif not_merge_backing:
            gr_warning(translations["turn_off_merge_backup"])
            return return_none

    if not model or not os.path.exists(model_path) or os.path.isdir(model_path) or not model.endswith((".pth", ".onnx")):
        gr_warning(translations["provide_file"].format(filename=translations["model"]))
        return return_none

    f0method, embedder_model = (method if method != "hybrid" else hybrid_method), (embedders if embedders != "custom" else custom_embedders)

    if use_audio:
        output_audio = os.path.join("audios", input_audio_name)

        from main.library.utils import pydub_convert, pydub_load
        
        def get_audio_file(label):
            matching_files = [f for f in os.listdir(output_audio) if label in f]

            if not matching_files: return translations["notfound"]   
            return os.path.join(output_audio, matching_files[0])

        output_path = os.path.join(output_audio, f"Convert_Vocals.{format}")
        output_backing = os.path.join(output_audio, f"Convert_Backing.{format}")
        output_merge_backup = os.path.join(output_audio, f"Vocals+Backing.{format}")
        output_merge_instrument = os.path.join(output_audio, f"Vocals+Instruments.{format}")

        if os.path.exists(output_audio): os.makedirs(output_audio, exist_ok=True)
        if os.path.exists(output_path): os.remove(output_path)

        if use_original:
            original_vocal = get_audio_file('Original_Vocals_No_Reverb.')

            if original_vocal == translations["notfound"]: original_vocal = get_audio_file('Original_Vocals.')

            if original_vocal == translations["notfound"]: 
                gr_warning(translations["not_found_original_vocal"])
                return return_none
            
            input_path = original_vocal
        else:
            main_vocal = get_audio_file('Main_Vocals_No_Reverb.')
            backing_vocal = get_audio_file('Backing_Vocals_No_Reverb.')

            if main_vocal == translations["notfound"]: main_vocal = get_audio_file('Main_Vocals.')
            if not not_merge_backing and backing_vocal == translations["notfound"]: backing_vocal = get_audio_file('Backing_Vocals.')

            if main_vocal == translations["notfound"]: 
                gr_warning(translations["not_found_main_vocal"])
                return return_none
            
            if not not_merge_backing and backing_vocal == translations["notfound"]: 
                gr_warning(translations["not_found_backing_vocal"])
                return return_none
            
            input_path = main_vocal
            backing_path = backing_vocal

        gr_info(translations["convert_vocal"])

        convert(pitch, filter_radius, index_rate, volume_envelope, protect, hop_length, f0method, input_path, output_path, model_path, index, autotune, clean, clean_strength, format, embedder_model, resample_sr, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file)

        gr_info(translations["convert_success"])

        if convert_backing:
            if os.path.exists(output_backing): os.remove(output_backing)

            gr_info(translations["convert_backup"])

            convert(pitch, filter_radius, index_rate, volume_envelope, protect, hop_length, f0method, backing_path, output_backing, model_path, index, autotune, clean, clean_strength, format, embedder_model, resample_sr, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file)

            gr_info(translations["convert_backup_success"])

        try:
            if not not_merge_backing and not use_original:
                backing_source = output_backing if convert_backing else backing_vocal

                if os.path.exists(output_merge_backup): os.remove(output_merge_backup)

                gr_info(translations["merge_backup"])

                pydub_convert(pydub_load(output_path)).overlay(pydub_convert(pydub_load(backing_source))).export(output_merge_backup, format=format)

                gr_info(translations["merge_success"])

            if merge_instrument:    
                vocals = output_merge_backup if not not_merge_backing and not use_original else output_path

                if os.path.exists(output_merge_instrument): os.remove(output_merge_instrument)

                gr_info(translations["merge_instruments_process"])

                instruments = get_audio_file('Instruments.')
                
                if instruments == translations["notfound"]: 
                    gr_warning(translations["not_found_instruments"])
                    output_merge_instrument = None
                else: pydub_convert(pydub_load(instruments)).overlay(pydub_convert(pydub_load(vocals))).export(output_merge_instrument, format=format)
                
                gr_info(translations["merge_success"])
        except:
            return return_none

        return [(None if use_original else output_path), output_backing, (None if not_merge_backing and use_original else output_merge_backup), (output_path if use_original else None), (output_merge_instrument if merge_instrument else None), {"visible": True, "__type__": "update"}]
    else:
        if not input or not os.path.exists(input) or os.path.isdir(input): 
            gr_warning(translations["input_not_valid"])
            return return_none
        
        if not output:
            gr_warning(translations["output_not_valid"])
            return return_none
        
        output = output.replace("wav", format)

        if os.path.isdir(input):
            gr_info(translations["is_folder"])

            if not [f for f in os.listdir(input) if f.lower().endswith(("wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3"))]:
                gr_warning(translations["not_found_in_folder"])
                return return_none
            
            gr_info(translations["batch_convert"])

            output_dir = os.path.dirname(output) or output
            convert(pitch, filter_radius, index_rate, volume_envelope, protect, hop_length, f0method, input, output_dir, model_path, index, autotune, clean, clean_strength, format, embedder_model, resample_sr, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file)

            gr_info(translations["batch_convert_success"])

            return return_none
        else:
            output_dir = os.path.dirname(output) or output

            if not os.path.exists(output_dir): os.makedirs(output_dir, exist_ok=True)
            if os.path.exists(output): os.remove(output)

            gr_info(translations["convert_vocal"])

            convert(pitch, filter_radius, index_rate, volume_envelope, protect, hop_length, f0method, input, output, model_path, index, autotune, clean, clean_strength, format, embedder_model, resample_sr, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file)

            gr_info(translations["convert_success"])

            return_none[0] = output
            return return_none

def convert_selection(clean, autotune, use_audio, use_original, convert_backing, not_merge_backing, merge_instrument, pitch, clean_strength, model, index, index_rate, input, output, format, method, hybrid_method, hop_length, embedders, custom_embedders, resample_sr, filter_radius, volume_envelope, protect, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, embedders_mode):
    if use_audio:
        gr_info(translations["search_separate"])

        choice = [f for f in os.listdir("audios") if os.path.isdir(os.path.join("audios", f))]

        gr_info(translations["found_choice"].format(choice=len(choice)))

        if len(choice) == 0: 
            gr_warning(translations["separator==0"])

            return [{"choices": [], "value": "", "interactive": False, "visible": False, "__type__": "update"}, None, None, None, None, None, {"visible": True, "__type__": "update"}]
        elif len(choice) == 1:
            convert_output = convert_audio(clean, autotune, use_audio, use_original, convert_backing, not_merge_backing, merge_instrument, pitch, clean_strength, model, index, index_rate, None, None, format, method, hybrid_method, hop_length, embedders, custom_embedders, resample_sr, filter_radius, volume_envelope, protect, split_audio, f0_autotune_strength, choice[0], checkpointing, onnx_f0_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, embedders_mode)

            return [{"choices": [], "value": "", "interactive": False, "visible": False, "__type__": "update"}, convert_output[0], convert_output[1], convert_output[2], convert_output[3], convert_output[4], {"visible": True, "__type__": "update"}]
        else: return [{"choices": choice, "value": "", "interactive": True, "visible": True, "__type__": "update"}, None, None, None, None, None, {"visible": False, "__type__": "update"}]
    else:
        main_convert = convert_audio(clean, autotune, use_audio, use_original, convert_backing, not_merge_backing, merge_instrument, pitch, clean_strength, model, index, index_rate, input, output, format, method, hybrid_method, hop_length, embedders, custom_embedders, resample_sr, filter_radius, volume_envelope, protect, split_audio, f0_autotune_strength, None, checkpointing, onnx_f0_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, embedders_mode)

        return [{"choices": [], "value": "", "interactive": False, "visible": False, "__type__": "update"}, main_convert[0], None, None, None, None, {"visible": True, "__type__": "update"}]
    
def convert_with_whisper(num_spk, model_size, cleaner, clean_strength, autotune, f0_autotune_strength, checkpointing, model_1, model_2, model_index_1, model_index_2, pitch_1, pitch_2, index_strength_1, index_strength_2, export_format, input_audio, output_audio, onnx_f0_mode, method, hybrid_method, hop_length, embed_mode, embedders, custom_embedders, resample_sr, filter_radius, volume_envelope, protect, formant_shifting, formant_qfrency_1, formant_timbre_1, formant_qfrency_2, formant_timbre_2):
    from pydub import AudioSegment
    from sklearn.cluster import AgglomerativeClustering
    
    from main.library.speaker_diarization.audio import Audio
    from main.library.speaker_diarization.segment import Segment
    from main.library.speaker_diarization.whisper import load_model
    from main.library.utils import check_spk_diarization, pydub_convert, pydub_load
    from main.library.speaker_diarization.embedding import SpeechBrainPretrainedSpeakerEmbedding
    
    check_spk_diarization(model_size)
    model_pth_1, model_pth_2 = os.path.join("assets", "weights", model_1), os.path.join("assets", "weights", model_2)

    if (not model_1 or not os.path.exists(model_pth_1) or os.path.isdir(model_pth_1) or not model_pth_1.endswith((".pth", ".onnx"))) and (not model_2 or not os.path.exists(model_pth_2) or os.path.isdir(model_pth_2) or not model_pth_2.endswith((".pth", ".onnx"))):
        gr_warning(translations["provide_file"].format(filename=translations["model"]))
        return None
    
    if not model_1: model_pth_1 = model_pth_2
    if not model_2: model_pth_2 = model_pth_1

    if not input_audio or not os.path.exists(input_audio) or os.path.isdir(input_audio): 
        gr_warning(translations["input_not_valid"])
        return None
        
    if not output_audio:
        gr_warning(translations["output_not_valid"])
        return None
    
    if os.path.exists(output_audio): os.remove(output_audio)
    gr_info(translations["start_whisper"])
    
    try:
        audio = Audio()

        embedding_model = SpeechBrainPretrainedSpeakerEmbedding(device=config.device)
        segments = load_model(model_size, device=config.device).transcribe(input_audio, fp16=configs.get("fp16", False), word_timestamps=True)["segments"]

        y, sr = librosa.load(input_audio, sr=None)  
        duration = len(y) / sr
            
        def segment_embedding(segment):
            waveform, _ = audio.crop(input_audio, Segment(segment["start"], min(duration, segment["end"])))
            return embedding_model(waveform.mean(dim=0, keepdim=True)[None] if waveform.shape[0] == 2 else waveform[None])  
        
        def time(secs):
            return datetime.timedelta(seconds=round(secs))
        
        def merge_audio(files_list, time_stamps, original_file_path, output_path, format):
            def extract_number(filename):
                match = re.search(r'_(\d+)', filename)
                return int(match.group(1)) if match else 0

            total_duration = len(pydub_load(original_file_path))
            combined = AudioSegment.empty() 
            current_position = 0 

            for file, (start_i, end_i) in zip(sorted(files_list, key=extract_number), time_stamps):
                if start_i > current_position: combined += AudioSegment.silent(duration=start_i - current_position)  
                
                combined += pydub_load(file)  
                current_position = end_i

            if current_position < total_duration: combined += AudioSegment.silent(duration=total_duration - current_position)
            combined.export(output_path, format=format)

            return output_path

        embeddings = np.zeros(shape=(len(segments), 192))
        for i, segment in enumerate(segments):
            embeddings[i] = segment_embedding(segment)

        labels = AgglomerativeClustering(num_spk).fit(np.nan_to_num(embeddings)).labels_
        for i in range(len(segments)):
            segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)

        merged_segments, current_text = [], []
        current_speaker, current_start = None, None

        for i, segment in enumerate(segments):
            speaker = segment["speaker"]
            start_time = segment["start"]
            text = segment["text"][1:]  

            if speaker == current_speaker:
                current_text.append(text)
                end_time = segment["end"]
            else:
                if current_speaker is not None: merged_segments.append({"speaker": current_speaker, "start": current_start, "end": end_time, "text": " ".join(current_text)})
                
                current_speaker = speaker
                current_start = start_time
                current_text = [text]
                end_time = segment["end"]

        if current_speaker is not None: merged_segments.append({"speaker": current_speaker, "start": current_start, "end": end_time, "text": " ".join(current_text)})

        gr_info(translations["whisper_done"])

        x = ""
        for segment in merged_segments:
            x += f"\n{segment['speaker']} {str(time(segment['start']))} - {str(time(segment['end']))}\n"
            x += segment["text"] + "\n"

        logger.info(x)

        gr_info(translations["process_audio"])

        audio = pydub_convert(pydub_load(input_audio))
        output_folder = "audios_temp"

        if os.path.exists(output_folder): shutil.rmtree(output_folder, ignore_errors=True)
        for f in [output_folder, os.path.join(output_folder, "1"), os.path.join(output_folder, "2")]:
            os.makedirs(f, exist_ok=True)

        time_stamps, processed_segments = [], []
        for i, segment in enumerate(merged_segments):
            start_ms = int(segment["start"] * 1000) 
            end_ms = int(segment["end"] * 1000)

            index = i + 1

            segment_filename = os.path.join(output_folder, "1" if i % 2 == 1 else "2", f"segment_{index}.wav")
            audio[start_ms:end_ms].export(segment_filename, format="wav")

            processed_segments.append(os.path.join(output_folder, "1" if i % 2 == 1 else "2", f"segment_{index}_output.wav"))
            time_stamps.append((start_ms, end_ms))

        f0method, embedder_model = (method if method != "hybrid" else hybrid_method), (embedders if embedders != "custom" else custom_embedders)

        gr_info(translations["process_done_start_convert"])

        convert(pitch_1, filter_radius, index_strength_1, volume_envelope, protect, hop_length, f0method, os.path.join(output_folder, "1"), output_folder, model_pth_1, model_index_1, autotune, cleaner, clean_strength, "wav", embedder_model, resample_sr, False, f0_autotune_strength, checkpointing, onnx_f0_mode, embed_mode, formant_shifting, formant_qfrency_1, formant_timbre_1, "")
        convert(pitch_2, filter_radius, index_strength_2, volume_envelope, protect, hop_length, f0method, os.path.join(output_folder, "2"), output_folder, model_pth_2, model_index_2, autotune, cleaner, clean_strength, "wav", embedder_model, resample_sr, False, f0_autotune_strength, checkpointing, onnx_f0_mode, embed_mode, formant_shifting, formant_qfrency_2, formant_timbre_2, "")

        gr_info(translations["convert_success"])
        return merge_audio(processed_segments, time_stamps, input_audio, output_audio.replace("wav", export_format), export_format)
    except Exception as e:
        gr_error(translations["error_occurred"].format(e=e))
        import traceback
        logger.debug(traceback.format_exc())
        return None
    finally:
        if os.path.exists("audios_temp"): shutil.rmtree("audios_temp", ignore_errors=True)

def convert_tts(clean, autotune, pitch, clean_strength, model, index, index_rate, input, output, format, method, hybrid_method, hop_length, embedders, custom_embedders, resample_sr, filter_radius, volume_envelope, protect, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, embedders_mode):
    model_path = os.path.join("assets", "weights", model)

    if not model_path or not os.path.exists(model_path) or os.path.isdir(model_path) or not model.endswith((".pth", ".onnx")):
        gr_warning(translations["provide_file"].format(filename=translations["model"]))
        return None

    if not input or not os.path.exists(input): 
        gr_warning(translations["input_not_valid"])
        return None
    
    if os.path.isdir(input): 
        input_audio = [f for f in os.listdir(input) if "tts" in f and f.lower().endswith(("wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3"))]
        
        if not input_audio:
            gr_warning(translations["not_found_in_folder"])
            return None
        
        input = os.path.join(input, input_audio[0])
    
    if not output:
        gr_warning(translations["output_not_valid"])
        return None
    
    output = output.replace("wav", format)
    if os.path.isdir(output): output = os.path.join(output, f"tts.{format}")

    output_dir = os.path.dirname(output)
    if not os.path.exists(output_dir): os.makedirs(output_dir, exist_ok=True)
    
    if os.path.exists(output): os.remove(output)

    f0method = method if method != "hybrid" else hybrid_method
    embedder_model = embedders if embedders != "custom" else custom_embedders

    gr_info(translations["convert_vocal"])

    convert(pitch, filter_radius, index_rate, volume_envelope, protect, hop_length, f0method, input, output, model_path, index, autotune, clean, clean_strength, format, embedder_model, resample_sr, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file)

    gr_info(translations["convert_success"])
    return output

def log_read(log_file, done):
    f = open(log_file, "w", encoding="utf-8")
    f.close()

    while 1:
        with open(log_file, "r", encoding="utf-8") as f:
            yield "".join(line for line in f.readlines() if "DEBUG" not in line and line.strip() != "")

        sleep(1)
        if done[0]: break

    with open(log_file, "r", encoding="utf-8") as f:
        log = "".join(line for line in f.readlines() if "DEBUG" not in line and line.strip() != "")

    yield log

def create_dataset(input_audio, output_dataset, clean_dataset, clean_strength, separator_reverb, kim_vocals_version, overlap, segments_size, denoise_mdx, skip, skip_start, skip_end, hop_length, batch_size, sample_rate):
    version = 1 if kim_vocals_version == "Version-1" else 2

    gr_info(translations["start"].format(start=translations["create"]))

    p = subprocess.Popen(f'{python} main/inference/create_dataset.py --input_audio "{input_audio}" --output_dataset "{output_dataset}" --clean_dataset {clean_dataset} --clean_strength {clean_strength} --separator_reverb {separator_reverb} --kim_vocal_version {version} --overlap {overlap} --segments_size {segments_size} --mdx_hop_length {hop_length} --mdx_batch_size {batch_size} --denoise_mdx {denoise_mdx} --skip {skip} --skip_start_audios "{skip_start}" --skip_end_audios "{skip_end}" --sample_rate {sample_rate}', shell=True)
    done = [False]

    threading.Thread(target=if_done, args=(done, p)).start()

    for log in log_read(os.path.join("assets", "logs", "create_dataset.log"), done):
        yield log

def preprocess(model_name, sample_rate, cpu_core, cut_preprocess, process_effects, path, clean_dataset, clean_strength):
    dataset = os.path.join(path)
    sr = int(float(sample_rate.rstrip("k")) * 1000)

    if not model_name: return gr_warning(translations["provide_name"])
    if not any(f.lower().endswith(("wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3")) for f in os.listdir(dataset) if os.path.isfile(os.path.join(dataset, f))): return gr_warning(translations["not_found_data"])
    
    model_dir = os.path.join("assets", "logs", model_name)
    if os.path.exists(model_dir): shutil.rmtree(model_dir, ignore_errors=True)

    p = subprocess.Popen(f'{python} main/inference/preprocess.py --model_name "{model_name}" --dataset_path "{dataset}" --sample_rate {sr} --cpu_cores {cpu_core} --cut_preprocess {cut_preprocess} --process_effects {process_effects} --clean_dataset {clean_dataset} --clean_strength {clean_strength}', shell=True)
    done = [False]

    threading.Thread(target=if_done, args=(done, p)).start()
    os.makedirs(model_dir, exist_ok=True)

    for log in log_read(os.path.join(model_dir, "preprocess.log"), done):
        yield log

def extract(model_name, version, method, pitch_guidance, hop_length, cpu_cores, gpu, sample_rate, embedders, custom_embedders, onnx_f0_mode, embedders_mode):
    embedder_model = embedders if embedders != "custom" else custom_embedders
    sr = int(float(sample_rate.rstrip("k")) * 1000)

    if not model_name: return gr_warning(translations["provide_name"])

    model_dir = os.path.join("assets", "logs", model_name)
    if not any(os.path.isfile(os.path.join(model_dir, "sliced_audios", f)) for f in os.listdir(os.path.join(model_dir, "sliced_audios"))) or not any(os.path.isfile(os.path.join(model_dir, "sliced_audios_16k", f)) for f in os.listdir(os.path.join(model_dir, "sliced_audios_16k"))): return gr_warning(translations["not_found_data_preprocess"])

    p = subprocess.Popen(f'{python} main/inference/extract.py --model_name "{model_name}" --rvc_version {version} --f0_method {method} --pitch_guidance {pitch_guidance} --hop_length {hop_length} --cpu_cores {cpu_cores} --gpu {gpu} --sample_rate {sr} --embedder_model {embedder_model} --f0_onnx {onnx_f0_mode} --embedders_mode {embedders_mode}', shell=True)
    done = [False]

    threading.Thread(target=if_done, args=(done, p)).start()
    os.makedirs(model_dir, exist_ok=True)

    for log in log_read(os.path.join(model_dir, "extract.log"), done):
        yield log

def create_index(model_name, rvc_version, index_algorithm):
    if not model_name: return gr_warning(translations["provide_name"])
    model_dir = os.path.join("assets", "logs", model_name)

    if not any(os.path.isfile(os.path.join(model_dir, f"{rvc_version}_extracted", f)) for f in os.listdir(os.path.join(model_dir, f"{rvc_version}_extracted"))): return gr_warning(translations["not_found_data_extract"])

    p = subprocess.Popen(f'{python} main/inference/create_index.py --model_name "{model_name}" --rvc_version {rvc_version} --index_algorithm {index_algorithm}', shell=True)
    done = [False]

    threading.Thread(target=if_done, args=(done, p)).start()
    os.makedirs(model_dir, exist_ok=True)

    for log in log_read(os.path.join(model_dir, "create_index.log"), done):
        yield log

def training(model_name, rvc_version, save_every_epoch, save_only_latest, save_every_weights, total_epoch, sample_rate, batch_size, gpu, pitch_guidance, not_pretrain, custom_pretrained, pretrain_g, pretrain_d, detector, threshold, clean_up, cache, model_author, vocoder, checkpointing, deterministic, benchmark):
    sr = int(float(sample_rate.rstrip("k")) * 1000)
    if not model_name: return gr_warning(translations["provide_name"])

    model_dir = os.path.join("assets", "logs", model_name)
    if os.path.exists(os.path.join(model_dir, "train_pid.txt")): os.remove(os.path.join(model_dir, "train_pid.txt"))

    if not any(os.path.isfile(os.path.join(model_dir, f"{rvc_version}_extracted", f)) for f in os.listdir(os.path.join(model_dir, f"{rvc_version}_extracted"))): return gr_warning(translations["not_found_data_extract"])

    if not not_pretrain:
        if not custom_pretrained: 
            pretrained_selector = {True: {32000: ("f0G32k.pth", "f0D32k.pth"), 40000: ("f0G40k.pth", "f0D40k.pth"), 48000: ("f0G48k.pth", "f0D48k.pth")}, False: {32000: ("G32k.pth", "D32k.pth"), 40000: ("G40k.pth", "D40k.pth"), 48000: ("G48k.pth", "D48k.pth")}}

            pg, pd = pretrained_selector[pitch_guidance][sr]
        else:
            if not pretrain_g: return gr_warning(translations["provide_pretrained"].format(dg="G"))
            if not pretrain_d: return gr_warning(translations["provide_pretrained"].format(dg="D"))
            
            pg, pd = pretrain_g, pretrain_d

        pretrained_G, pretrained_D = (os.path.join("assets", "models", f"pretrained_{rvc_version}", f"{vocoder}_{pg}" if vocoder != 'Default' else pg), os.path.join("assets", "models", f"pretrained_{rvc_version}", f"{vocoder}_{pd}" if vocoder != 'Default' else pd)) if not custom_pretrained else (os.path.join("assets", "models", f"pretrained_custom", pg), os.path.join("assets", "models", f"pretrained_custom", pd))
        download_version = codecs.decode(f"uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/cergenvarq_i{'2' if rvc_version == 'v2' else '1'}/", "rot13")
        
        if not custom_pretrained:
            try:
                if not os.path.exists(pretrained_G):
                    gr_info(translations["download_pretrained"].format(dg="G", rvc_version=rvc_version))
                    huggingface.HF_download_file("".join([download_version, vocoder, "_", pg]) if vocoder != 'Default' else (download_version + pg), os.path.join("assets", "models", f"pretrained_{rvc_version}", f"{vocoder}_{pg}" if vocoder != 'Default' else pg))
                        
                if not os.path.exists(pretrained_D):
                    gr_info(translations["download_pretrained"].format(dg="D", rvc_version=rvc_version))
                    huggingface.HF_download_file("".join([download_version, vocoder, "_", pd]) if vocoder != 'Default' else (download_version + pd), os.path.join("assets", "models", f"pretrained_{rvc_version}", f"{vocoder}_{pd}" if vocoder != 'Default' else pd))
            except:
                gr_warning(translations["not_use_pretrain_error_download"])
                pretrained_G, pretrained_D = None, None
        else:
            if not os.path.exists(pretrained_G): return gr_warning(translations["not_found_pretrain"].format(dg="G"))
            if not os.path.exists(pretrained_D): return gr_warning(translations["not_found_pretrain"].format(dg="D"))
    else: gr_warning(translations["not_use_pretrain"])

    gr_info(translations["start"].format(start=translations["training"]))

    p = subprocess.Popen(f'{python} main/inference/train.py --model_name "{model_name}" --rvc_version {rvc_version} --save_every_epoch {save_every_epoch} --save_only_latest {save_only_latest} --save_every_weights {save_every_weights} --total_epoch {total_epoch} --sample_rate {sr} --batch_size {batch_size} --gpu {gpu} --pitch_guidance {pitch_guidance} --overtraining_detector {detector} --overtraining_threshold {threshold} --cleanup {clean_up} --cache_data_in_gpu {cache} --g_pretrained_path "{pretrained_G}" --d_pretrained_path "{pretrained_D}" --model_author "{model_author}" --vocoder "{vocoder}" --checkpointing {checkpointing} --deterministic {deterministic} --benchmark {benchmark}', shell=True)
    done = [False]

    with open(os.path.join(model_dir, "train_pid.txt"), "w") as pid_file:
        pid_file.write(str(p.pid))

    threading.Thread(target=if_done, args=(done, p)).start()

    for log in log_read(os.path.join(model_dir, "train.log"), done):
        if len(log.split("\n")) > 100: log = log[-100:]
        yield log

def stop_pid(pid_file, model_name=None, train=False):
    try:
        pid_file_path = os.path.join("assets", f"{pid_file}.txt") if model_name is None else os.path.join("assets", "logs", model_name, f"{pid_file}.txt")

        if not os.path.exists(pid_file_path): return gr_warning(translations["not_found_pid"])
        else:
            with open(pid_file_path, "r") as pid_file:
                pids = [int(pid) for pid in pid_file.readlines()]

            for pid in pids:
                os.kill(pid, 9)

            if os.path.exists(pid_file_path): os.remove(pid_file_path)

        pid_file_path = os.path.join("assets", "logs", model_name, "config.json")

        if train and os.path.exists(pid_file_path):
            with open(pid_file_path, "r") as pid_file:
                pid_data = json.load(pid_file)
                pids = pid_data.get("process_pids", [])

            with open(pid_file_path, "w") as pid_file:
                pid_data.pop("process_pids", None)

                json.dump(pid_data, pid_file, indent=4)

            for pid in pids:
                os.kill(pid, 9)

            gr_info(translations["end_pid"])
    except:
        pass

def load_presets(presets, cleaner, autotune, pitch, clean_strength, index_strength, resample_sr, filter_radius, volume_envelope, protect, split_audio, f0_autotune_strength, formant_shifting, formant_qfrency, formant_timbre):
    if not presets: return gr_warning(translations["provide_file_settings"])

    with open(os.path.join("assets", "presets", presets)) as f:
        file = json.load(f)

    gr_info(translations["load_presets"].format(presets=presets))
    return file.get("cleaner", cleaner), file.get("autotune", autotune), file.get("pitch", pitch), file.get("clean_strength", clean_strength), file.get("index_strength", index_strength), file.get("resample_sr", resample_sr), file.get("filter_radius", filter_radius), file.get("volume_envelope", volume_envelope), file.get("protect", protect), file.get("split_audio", split_audio), file.get("f0_autotune_strength", f0_autotune_strength), file.get("formant_shifting", formant_shifting), file.get("formant_qfrency", formant_qfrency), file.get("formant_timbre", formant_timbre)

def save_presets(name, cleaner, autotune, pitch, clean_strength, index_strength, resample_sr, filter_radius, volume_envelope, protect, split_audio, f0_autotune_strength, cleaner_chbox, autotune_chbox, pitch_chbox, index_strength_chbox, resample_sr_chbox, filter_radius_chbox, volume_envelope_chbox, protect_chbox, split_audio_chbox, formant_shifting_chbox, formant_shifting, formant_qfrency, formant_timbre):  
    if not name: return gr_warning(translations["provide_filename_settings"])
    if not any([cleaner_chbox, autotune_chbox, pitch_chbox, index_strength_chbox, resample_sr_chbox, filter_radius_chbox, volume_envelope_chbox, protect_chbox, split_audio_chbox, formant_shifting_chbox]): return gr_warning(translations["choose1"])

    settings = {}

    for checkbox, data in [(cleaner_chbox, {"cleaner": cleaner, "clean_strength": clean_strength}), (autotune_chbox, {"autotune": autotune, "f0_autotune_strength": f0_autotune_strength}), (pitch_chbox, {"pitch": pitch}), (index_strength_chbox, {"index_strength": index_strength}), (resample_sr_chbox, {"resample_sr": resample_sr}), (filter_radius_chbox, {"filter_radius": filter_radius}), (volume_envelope_chbox, {"volume_envelope": volume_envelope}), (protect_chbox, {"protect": protect}), (split_audio_chbox, {"split_audio": split_audio}), (formant_shifting_chbox, {"formant_shifting": formant_shifting, "formant_qfrency": formant_qfrency, "formant_timbre": formant_timbre})]:
        if checkbox: settings.update(data)

    with open(os.path.join("assets", "presets", name + ".json"), "w") as f:
        json.dump(settings, f, indent=4)

    gr_info(translations["export_settings"])
    return change_preset_choices()

def report_bug(error_info, provide):
    report_path = os.path.join("assets", "logs", "report_bugs.log")
    if os.path.exists(report_path): os.remove(report_path)

    report_url = codecs.decode(requests.get(codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/jroubbx.gkg", "rot13")).text, "rot13")
    if not error_info: error_info = "Không Có"

    gr_info(translations["thank"])

    if provide:
        try:
            for log in [os.path.join(root, name) for root, _, files in os.walk(os.path.join("assets", "logs"), topdown=False) for name in files if name.endswith(".log")]:
                with open(log, "r", encoding="utf-8") as r:
                    with open(report_path, "a", encoding="utf-8") as w:
                        w.write(str(r.read()))
                        w.write("\n")
        except Exception as e:
            gr_error(translations["error_read_log"])
            logger.debug(e)

        try:
            with open(report_path, "r", encoding="utf-8") as f:
                content = f.read()

            requests.post(report_url, json={"embeds": [{"title": "Báo Cáo Lỗi", "description": f"Mô tả lỗi: {error_info}", "color": 15158332, "author": {"name": "Vietnamese_RVC", "icon_url": codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/vpb.cat", "rot13"), "url": codecs.decode("uggcf://tvguho.pbz/CunzUhlauNau16/Ivrganzrfr-EIP/gerr/znva","rot13")}, "thumbnail": {"url": codecs.decode("uggcf://p.grabe.pbz/7dADJbv-36fNNNNq/grabe.tvs", "rot13")}, "fields": [{"name": "Số Lượng Gỡ Lỗi", "value": content.count("DEBUG")}, {"name": "Số Lượng Thông Tin", "value": content.count("INFO")}, {"name": "Số Lượng Cảnh Báo", "value": content.count("WARNING")}, {"name": "Số Lượng Lỗi", "value": content.count("ERROR")}], "footer": {"text": f"Tên Máy: {platform.uname().node} - Hệ Điều Hành: {platform.system()}-{platform.version()}\nThời Gian Báo Cáo Lỗi: {datetime.datetime.now()}."}}]})

            with open(report_path, "rb") as f:
                requests.post(report_url, files={"file": f})
        except Exception as e:
            gr_error(translations["error_send"])
            logger.debug(e)
        finally:
            if os.path.exists(report_path): os.remove(report_path)
    else: requests.post(report_url, json={"embeds": [{"title": "Báo Cáo Lỗi", "description": error_info}]})

def f0_extract(audio, f0_method, f0_onnx):
    if not audio or not os.path.exists(audio) or os.path.isdir(audio): 
        gr_warning(translations["input_not_valid"])
        return [None]*2

    from matplotlib import pyplot as plt
    from main.library.utils import check_predictors
    from main.inference.extract import FeatureInput

    check_predictors(f0_method, f0_onnx)

    f0_path = os.path.join("assets", "f0", os.path.splitext(os.path.basename(audio))[0])
    image_path = os.path.join(f0_path, "f0.png")
    txt_path = os.path.join(f0_path, "f0.txt")

    gr_info(translations["start_extract"])

    if not os.path.exists(f0_path): os.makedirs(f0_path, exist_ok=True)

    y, sr = librosa.load(audio, sr=None)

    feats = FeatureInput(sample_rate=sr, is_half=config.is_half, device=config.device)
    feats.f0_max = 1600.0

    F_temp = np.array(feats.compute_f0(y.flatten(), f0_method, 160, f0_onnx), dtype=np.float32)
    F_temp[F_temp == 0] = np.nan

    f0 = 1200 * np.log2(F_temp / librosa.midi_to_hz(0))

    plt.figure(figsize=(10, 4))
    plt.plot(f0)
    plt.title(f0_method)
    plt.xlabel(translations["time_frames"])
    plt.ylabel(translations["Frequency"])
    plt.savefig(image_path)
    plt.close()

    with open(txt_path, "w") as f:
        for i, f0_value in enumerate(f0):
            f.write(f"{i * sr / 160},{f0_value}\n")

    gr_info(translations["extract_done"])

    return [txt_path, image_path]

def pitch_guidance_lock(vocoders):
    return {"value": True, "interactive": vocoders == "Default", "__type__": "update"}

def vocoders_lock(pitch, vocoders):
    return {"value": vocoders if pitch else "Default", "interactive": pitch, "__type__": "update"}

def run_audioldm2(input_path, output_path, export_format, sample_rate, audioldm_model, source_prompt, target_prompt, steps, cfg_scale_src, cfg_scale_tar, t_start, save_compute):
    if not input_path or not os.path.exists(input_path) or os.path.isdir(input_path): 
        gr_warning(translations["input_not_valid"])
        return None
        
    if not output_path:
        gr_warning(translations["output_not_valid"])
        return None
    
    output_path = output_path.replace("wav", export_format)

    if os.path.exists(output_path): os.remove(output_path)

    gr_info(translations["start_edit"].format(input_path=input_path))
    subprocess.run([python, "main/inference/audioldm2.py", "--input_path", input_path, "--output_path", output_path, "--export_format", str(export_format), "--sample_rate", str(sample_rate), "--audioldm_model", audioldm_model, "--source_prompt", source_prompt, "--target_prompt", target_prompt, "--steps", str(steps), "--cfg_scale_src", str(cfg_scale_src), "--cfg_scale_tar", str(cfg_scale_tar), "--t_start", str(t_start), "--save_compute", str(save_compute)])
    
    gr_info(translations["success"])
    return output_path

def change_fp(fp):
    fp16 = fp == "fp16"

    if fp16 and config.device == "cpu": 
        gr_warning(translations["fp16_not_support"])
        return "fp32"
    else:
        gr_info(translations["start_update_precision"])

        configs = json.load(open(configs_json, "r"))
        configs["fp16"] = config.is_half = fp16

        with open(configs_json, "w") as f:
            json.dump(configs, f, indent=4)

        gr_info(translations["success"])
        return "fp16" if fp16 else "fp32"

def unlock_f0(value):
    return {"choices": method_f0_full if value else method_f0, "value": "rmvpe", "__type__": "update"} 

def unlock_vocoder(value, vocoder):
    return {"value": vocoder if value == "v2" else "Default", "interactive": value == "v2", "__type__": "update"} 

def unlock_ver(value, vocoder):
    return {"value": "v2" if vocoder == "Default" else value, "interactive": vocoder == "Default", "__type__": "update"}

def visible_embedders(value):
    return {"visible": value != "spin", "__type__": "update"}