Spaces:
Running
Running
File size: 13,912 Bytes
96134ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import os
import sys
import time
import tqdm
import torch
import logging
import librosa
import argparse
import scipy.signal
import logging.handlers
import numpy as np
import soundfile as sf
from torch import inference_mode
from distutils.util import strtobool
sys.path.append(os.getcwd())
from main.configs.config import Config
from main.library.audioldm2.utils import load_audio
from main.library.audioldm2.models import load_model
config = Config()
translations = config.translations
logger = logging.getLogger(__name__)
logger.propagate = False
for l in ["torch", "httpx", "httpcore", "diffusers", "transformers"]:
logging.getLogger(l).setLevel(logging.ERROR)
if logger.hasHandlers(): logger.handlers.clear()
else:
console_handler = logging.StreamHandler()
console_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
console_handler.setFormatter(console_formatter)
console_handler.setLevel(logging.INFO)
file_handler = logging.handlers.RotatingFileHandler(os.path.join("assets", "logs", "audioldm2.log"), maxBytes=5*1024*1024, backupCount=3, encoding='utf-8')
file_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
file_handler.setFormatter(file_formatter)
file_handler.setLevel(logging.DEBUG)
logger.addHandler(console_handler)
logger.addHandler(file_handler)
logger.setLevel(logging.DEBUG)
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--input_path", type=str, required=True)
parser.add_argument("--output_path", type=str, default="./output.wav")
parser.add_argument("--export_format", type=str, default="wav")
parser.add_argument("--sample_rate", type=int, default=44100)
parser.add_argument("--audioldm_model", type=str, default="audioldm2-music")
parser.add_argument("--source_prompt", type=str, default="")
parser.add_argument("--target_prompt", type=str, default="")
parser.add_argument("--steps", type=int, default=200)
parser.add_argument("--cfg_scale_src", type=float, default=3.5)
parser.add_argument("--cfg_scale_tar", type=float, default=12)
parser.add_argument("--t_start", type=int, default=45)
parser.add_argument("--save_compute", type=lambda x: bool(strtobool(x)), default=False)
return parser.parse_args()
def main():
args = parse_arguments()
input_path, output_path, export_format, sample_rate, audioldm_model, source_prompt, target_prompt, steps, cfg_scale_src, cfg_scale_tar, t_start, save_compute = args.input_path, args.output_path, args.export_format, args.sample_rate, args.audioldm_model, args.source_prompt, args.target_prompt, args.steps, args.cfg_scale_src, args.cfg_scale_tar, args.t_start, args.save_compute
log_data = {translations['audio_path']: input_path, translations['output_path']: output_path.replace('wav', export_format), translations['model_name']: audioldm_model, translations['export_format']: export_format, translations['sample_rate']: sample_rate, translations['steps']: steps, translations['source_prompt']: source_prompt, translations['target_prompt']: target_prompt, translations['cfg_scale_src']: cfg_scale_src, translations['cfg_scale_tar']: cfg_scale_tar, translations['t_start']: t_start, translations['save_compute']: save_compute}
for key, value in log_data.items():
logger.debug(f"{key}: {value}")
start_time = time.time()
logger.info(translations["start_edit"].format(input_path=input_path))
pid_path = os.path.join("assets", "audioldm2_pid.txt")
with open(pid_path, "w") as pid_file:
pid_file.write(str(os.getpid()))
try:
edit(input_path, output_path, audioldm_model, source_prompt, target_prompt, steps, cfg_scale_src, cfg_scale_tar, t_start, save_compute, sample_rate, config.device, export_format=export_format)
except Exception as e:
logger.error(translations["error_edit"].format(e=e))
import traceback
logger.debug(traceback.format_exc())
logger.info(translations["edit_success"].format(time=f"{(time.time() - start_time):.2f}", output_path=output_path.replace('wav', export_format)))
def invert(ldm_stable, x0, prompt_src, num_diffusion_steps, cfg_scale_src, duration, save_compute):
with inference_mode():
w0 = ldm_stable.vae_encode(x0)
_, zs, wts, extra_info = inversion_forward_process(ldm_stable, w0, etas=1, prompts=[prompt_src], cfg_scales=[cfg_scale_src], num_inference_steps=num_diffusion_steps, numerical_fix=True, duration=duration, save_compute=save_compute)
return zs, wts, extra_info
def low_pass_filter(audio, cutoff=7500, sr=16000):
b, a = scipy.signal.butter(4, cutoff / (sr / 2), btype='low')
return scipy.signal.filtfilt(b, a, audio)
def sample(output_audio, sr, ldm_stable, zs, wts, extra_info, prompt_tar, tstart, cfg_scale_tar, duration, save_compute, export_format = "wav"):
tstart = torch.tensor(tstart, dtype=torch.int32)
w0, _ = inversion_reverse_process(ldm_stable, xT=wts, tstart=tstart, etas=1., prompts=[prompt_tar], neg_prompts=[""], cfg_scales=[cfg_scale_tar], zs=zs[:int(tstart)], duration=duration, extra_info=extra_info, save_compute=save_compute)
with inference_mode():
x0_dec = ldm_stable.vae_decode(w0.to(torch.float16 if config.is_half else torch.float32))
if x0_dec.dim() < 4: x0_dec = x0_dec[None, :, :, :]
with torch.no_grad():
audio = ldm_stable.decode_to_mel(x0_dec.to(torch.float16 if config.is_half else torch.float32))
audio = audio.float().squeeze().cpu().numpy()
orig_sr = 16000
if sr != 16000 and sr > 0:
audio = librosa.resample(audio, orig_sr=orig_sr, target_sr=sr, res_type="soxr_vhq")
orig_sr = sr
audio = low_pass_filter(audio, 7500, orig_sr)
sf.write(output_audio, np.tile(audio, (2, 1)).T, orig_sr, format=export_format)
return output_audio
def edit(input_audio, output_audio, model_id, source_prompt = "", target_prompt = "", steps = 200, cfg_scale_src = 3.5, cfg_scale_tar = 12, t_start = 45, save_compute = True, sr = 44100, device = "cpu", export_format = "wav"):
ldm_stable = load_model(model_id, device=device)
ldm_stable.model.scheduler.set_timesteps(steps, device=device)
x0, duration = load_audio(input_audio, ldm_stable.get_melspectrogram(), device=device)
zs_tensor, wts_tensor, extra_info_list = invert(ldm_stable=ldm_stable, x0=x0, prompt_src=source_prompt, num_diffusion_steps=steps, cfg_scale_src=cfg_scale_src, duration=duration, save_compute=save_compute)
return sample(output_audio, sr, ldm_stable, zs_tensor, wts_tensor, extra_info_list, prompt_tar=target_prompt, tstart=int(t_start / 100 * steps), cfg_scale_tar=cfg_scale_tar, duration=duration, save_compute=save_compute, export_format=export_format)
def inversion_forward_process(model, x0, etas = None, prompts = [""], cfg_scales = [3.5], num_inference_steps = 50, numerical_fix = False, duration = None, first_order = False, save_compute = True):
if len(prompts) > 1 or prompts[0] != "":
text_embeddings_hidden_states, text_embeddings_class_labels, text_embeddings_boolean_prompt_mask = model.encode_text(prompts)
uncond_embeddings_hidden_states, uncond_embeddings_class_lables, uncond_boolean_prompt_mask = model.encode_text([""], negative=True, save_compute=save_compute, cond_length=text_embeddings_class_labels.shape[1] if text_embeddings_class_labels is not None else None)
else: uncond_embeddings_hidden_states, uncond_embeddings_class_lables, uncond_boolean_prompt_mask = model.encode_text([""], negative=True, save_compute=False)
timesteps = model.model.scheduler.timesteps.to(model.device)
variance_noise_shape = model.get_noise_shape(x0, num_inference_steps)
if type(etas) in [int, float]: etas = [etas]*model.model.scheduler.num_inference_steps
xts = model.sample_xts_from_x0(x0, num_inference_steps=num_inference_steps)
zs = torch.zeros(size=variance_noise_shape, device=model.device)
extra_info = [None] * len(zs)
if timesteps[0].dtype == torch.int64: t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
elif timesteps[0].dtype == torch.float32: t_to_idx = {float(v): k for k, v in enumerate(timesteps)}
xt = x0
model.setup_extra_inputs(xt, init_timestep=timesteps[0], audio_end_in_s=duration, save_compute=save_compute and prompts[0] != "")
for t in tqdm.tqdm(timesteps, desc=translations["inverting"], ncols=100, unit="a"):
idx = num_inference_steps - t_to_idx[int(t) if timesteps[0].dtype == torch.int64 else float(t)] - 1
xt = xts[idx + 1][None]
xt_inp = model.model.scheduler.scale_model_input(xt, t).to(torch.float16 if config.is_half else torch.float32)
with torch.no_grad():
if save_compute and prompts[0] != "":
comb_out, _, _ = model.unet_forward(xt_inp.expand(2, -1, -1, -1) if hasattr(model.model, 'unet') else xt_inp.expand(2, -1, -1), timestep=t, encoder_hidden_states=torch.cat([uncond_embeddings_hidden_states, text_embeddings_hidden_states], dim=0) if uncond_embeddings_hidden_states is not None else None, class_labels=torch.cat([uncond_embeddings_class_lables, text_embeddings_class_labels], dim=0) if uncond_embeddings_class_lables is not None else None, encoder_attention_mask=torch.cat([uncond_boolean_prompt_mask, text_embeddings_boolean_prompt_mask], dim=0) if uncond_boolean_prompt_mask is not None else None)
out, cond_out = comb_out.sample.chunk(2, dim=0)
else:
out = model.unet_forward(xt_inp, timestep=t, encoder_hidden_states=uncond_embeddings_hidden_states, class_labels=uncond_embeddings_class_lables, encoder_attention_mask=uncond_boolean_prompt_mask)[0].sample
if len(prompts) > 1 or prompts[0] != "": cond_out = model.unet_forward(xt_inp, timestep=t, encoder_hidden_states=text_embeddings_hidden_states, class_labels=text_embeddings_class_labels, encoder_attention_mask=text_embeddings_boolean_prompt_mask)[0].sample
if len(prompts) > 1 or prompts[0] != "": noise_pred = out + (cfg_scales[0] * (cond_out - out)).sum(axis=0).unsqueeze(0)
else: noise_pred = out
xtm1 = xts[idx][None]
z, xtm1, extra = model.get_zs_from_xts(xt, xtm1, noise_pred, t, eta=etas[idx], numerical_fix=numerical_fix, first_order=first_order)
zs[idx] = z
xts[idx] = xtm1
extra_info[idx] = extra
if zs is not None: zs[0] = torch.zeros_like(zs[0])
return xt, zs, xts, extra_info
def inversion_reverse_process(model, xT, tstart, etas = 0, prompts = [""], neg_prompts = [""], cfg_scales = None, zs = None, duration = None, first_order = False, extra_info = None, save_compute = True):
text_embeddings_hidden_states, text_embeddings_class_labels, text_embeddings_boolean_prompt_mask = model.encode_text(prompts)
uncond_embeddings_hidden_states, uncond_embeddings_class_lables, uncond_boolean_prompt_mask = model.encode_text(neg_prompts, negative=True, save_compute=save_compute, cond_length=text_embeddings_class_labels.shape[1] if text_embeddings_class_labels is not None else None)
xt = xT[tstart.max()].unsqueeze(0)
if etas is None: etas = 0
if type(etas) in [int, float]: etas = [etas]*model.model.scheduler.num_inference_steps
assert len(etas) == model.model.scheduler.num_inference_steps
timesteps = model.model.scheduler.timesteps.to(model.device)
if timesteps[0].dtype == torch.int64: t_to_idx = {int(v): k for k, v in enumerate(timesteps[-zs.shape[0]:])}
elif timesteps[0].dtype == torch.float32: t_to_idx = {float(v): k for k, v in enumerate(timesteps[-zs.shape[0]:])}
model.setup_extra_inputs(xt, extra_info=extra_info, init_timestep=timesteps[-zs.shape[0]], audio_end_in_s=duration, save_compute=save_compute)
for t in tqdm.tqdm(timesteps[-zs.shape[0]:], desc=translations["editing"], ncols=100, unit="a"):
idx = model.model.scheduler.num_inference_steps - t_to_idx[int(t) if timesteps[0].dtype == torch.int64 else float(t)] - (model.model.scheduler.num_inference_steps - zs.shape[0] + 1)
xt_inp = model.model.scheduler.scale_model_input(xt, t).to(torch.float16 if config.is_half else torch.float32)
with torch.no_grad():
if save_compute:
comb_out, _, _ = model.unet_forward(xt_inp.expand(2, -1, -1, -1) if hasattr(model.model, 'unet') else xt_inp.expand(2, -1, -1), timestep=t, encoder_hidden_states=torch.cat([uncond_embeddings_hidden_states, text_embeddings_hidden_states], dim=0) if uncond_embeddings_hidden_states is not None else None, class_labels=torch.cat([uncond_embeddings_class_lables, text_embeddings_class_labels], dim=0) if uncond_embeddings_class_lables is not None else None, encoder_attention_mask=torch.cat([uncond_boolean_prompt_mask, text_embeddings_boolean_prompt_mask], dim=0) if uncond_boolean_prompt_mask is not None else None)
uncond_out, cond_out = comb_out.sample.chunk(2, dim=0)
else:
uncond_out = model.unet_forward(xt_inp, timestep=t, encoder_hidden_states=uncond_embeddings_hidden_states, class_labels=uncond_embeddings_class_lables, encoder_attention_mask=uncond_boolean_prompt_mask)[0].sample
cond_out = model.unet_forward(xt_inp, timestep=t, encoder_hidden_states=text_embeddings_hidden_states, class_labels=text_embeddings_class_labels, encoder_attention_mask=text_embeddings_boolean_prompt_mask)[0].sample
z = zs[idx] if zs is not None else None
noise_pred = uncond_out + (cfg_scales[0] * (cond_out - uncond_out)).sum(axis=0).unsqueeze(0)
xt = model.reverse_step_with_custom_noise(noise_pred, t, xt, variance_noise=z.unsqueeze(0), eta=etas[idx], first_order=first_order)
return xt, zs
if __name__ == "__main__": main() |