File size: 18,413 Bytes
96134ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import os
import sys
import torch
import librosa

import numpy as np
import torch.nn.functional as F

from scipy.signal import get_window
from librosa.util import pad_center
from diffusers import DDIMScheduler, AudioLDM2Pipeline
from diffusers.models.unets.unet_2d_condition import UNet2DConditionOutput
from transformers import RobertaTokenizer, RobertaTokenizerFast, VitsTokenizer

sys.path.append(os.getcwd())

from main.configs.config import Config
from main.library.utils import check_audioldm2

config = Config()

class Pipeline(torch.nn.Module):
    def __init__(self, model_id, device, double_precision = False, token = None, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.model_id = model_id
        self.device = device
        self.double_precision = double_precision
        self.token = token

    def load_scheduler(self):
        pass

    def get_melspectrogram(self):
        pass

    def vae_encode(self, x):
        pass

    def vae_decode(self, x):
        pass

    def decode_to_mel(self, x):
        pass

    def setup_extra_inputs(self, *args, **kwargs):
        pass

    def encode_text(self, prompts, **kwargs):
        pass

    def get_variance(self, timestep, prev_timestep):
        pass

    def get_alpha_prod_t_prev(self, prev_timestep):
        pass

    def get_noise_shape(self, x0, num_steps):
        return (num_steps, self.model.unet.config.in_channels, x0.shape[-2], x0.shape[-1])

    def sample_xts_from_x0(self, x0, num_inference_steps = 50):
        alpha_bar = self.model.scheduler.alphas_cumprod
        sqrt_one_minus_alpha_bar = (1 - alpha_bar) ** 0.5
        timesteps = self.model.scheduler.timesteps.to(self.device)
        t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
        xts = torch.zeros(self.get_noise_shape(x0, num_inference_steps + 1)).to(x0.device)
        xts[0] = x0

        for t in reversed(timesteps):
            idx = num_inference_steps - t_to_idx[int(t)]
            xts[idx] = x0 * (alpha_bar[t] ** 0.5) + torch.randn_like(x0) * sqrt_one_minus_alpha_bar[t]

        return xts

    def get_zs_from_xts(self, xt, xtm1, noise_pred, t, eta = 0, numerical_fix = True, **kwargs):
        alpha_bar = self.model.scheduler.alphas_cumprod

        if self.model.scheduler.config.prediction_type == 'epsilon': pred_original_sample = (xt - (1 - alpha_bar[t]) ** 0.5 * noise_pred) / alpha_bar[t] ** 0.5
        elif self.model.scheduler.config.prediction_type == 'v_prediction': pred_original_sample = (alpha_bar[t] ** 0.5) * xt - ((1 - alpha_bar[t]) ** 0.5) * noise_pred

        prev_timestep = t - self.model.scheduler.config.num_train_timesteps // self.model.scheduler.num_inference_steps
        alpha_prod_t_prev = self.get_alpha_prod_t_prev(prev_timestep)
        variance = self.get_variance(t, prev_timestep)

        if self.model.scheduler.config.prediction_type == 'epsilon': radom_noise_pred = noise_pred
        elif self.model.scheduler.config.prediction_type == 'v_prediction': radom_noise_pred = (alpha_bar[t] ** 0.5) * noise_pred + ((1 - alpha_bar[t]) ** 0.5) * xt

        mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + ((1 - alpha_prod_t_prev - eta * variance) ** (0.5) * radom_noise_pred)
        z = (xtm1 - mu_xt) / (eta * variance ** 0.5)

        if numerical_fix: xtm1 = mu_xt + (eta * variance ** 0.5)*z
        return z, xtm1, None

    def reverse_step_with_custom_noise(self, model_output, timestep, sample, variance_noise = None, eta = 0, **kwargs):
        prev_timestep = timestep - self.model.scheduler.config.num_train_timesteps // self.model.scheduler.num_inference_steps
        alpha_prod_t = self.model.scheduler.alphas_cumprod[timestep]
        alpha_prod_t_prev = self.get_alpha_prod_t_prev(prev_timestep)
        beta_prod_t = 1 - alpha_prod_t

        if self.model.scheduler.config.prediction_type == 'epsilon': pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
        elif self.model.scheduler.config.prediction_type == 'v_prediction': pred_original_sample = (alpha_prod_t ** 0.5) * sample - (beta_prod_t ** 0.5) * model_output

        variance = self.get_variance(timestep, prev_timestep)

        if self.model.scheduler.config.prediction_type == 'epsilon': model_output_direction = model_output
        elif self.model.scheduler.config.prediction_type == 'v_prediction': model_output_direction = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample

        prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + ((1 - alpha_prod_t_prev - eta * variance) ** (0.5) * model_output_direction)

        if eta > 0:
            if variance_noise is None: variance_noise = torch.randn(model_output.shape, device=self.device)
            prev_sample = prev_sample + (eta * variance ** (0.5) * variance_noise)

        return prev_sample

    def unet_forward(self, sample, timestep, encoder_hidden_states, class_labels = None, timestep_cond = None, attention_mask = None, cross_attention_kwargs = None, added_cond_kwargs = None, down_block_additional_residuals = None, mid_block_additional_residual = None, encoder_attention_mask = None, replace_h_space = None, replace_skip_conns = None, return_dict = True, zero_out_resconns = None):
        pass

class STFT(torch.nn.Module):
    def __init__(self, fft_size, hop_size, window_size, window_type="hann"):
        super().__init__()
        self.fft_size = fft_size
        self.hop_size = hop_size
        self.window_size = window_size
        self.window_type = window_type
        
        scale = fft_size / hop_size
        fourier_basis = np.fft.fft(np.eye(fft_size))

        cutoff = fft_size // 2 + 1
        fourier_basis = np.vstack([np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])])
        
        self.forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
        self.inverse_basis = torch.FloatTensor(np.linalg.pinv(scale * fourier_basis).T[:, None, :])
        
        if window_type:
            assert fft_size >= window_size

            fft_window = torch.from_numpy(pad_center(get_window(window_type, window_size, fftbins=True), size=fft_size)).float()
            self.forward_basis *= fft_window
            self.inverse_basis *= fft_window
        
        if not hasattr(self, "forward_basis"): self.register_buffer("forward_basis", self.forward_basis)
        if not hasattr(self, "inverse_basis"): self.register_buffer("inverse_basis", self.inverse_basis)
    
    def transform(self, signal):
        batch_size, num_samples = signal.shape
        transformed_signal = F.conv1d(F.pad(signal.view(batch_size, 1, num_samples).unsqueeze(1), (self.fft_size // 2, self.fft_size // 2, 0, 0), mode="reflect").squeeze(1), self.forward_basis, stride=self.hop_size, padding=0).cpu()
        
        cutoff = self.fft_size // 2 + 1
        real_part, imag_part = transformed_signal[:, :cutoff, :], transformed_signal[:, cutoff:, :]

        return torch.sqrt(real_part ** 2 + imag_part ** 2), torch.atan2(imag_part, real_part)

class MelSpectrogramProcessor(torch.nn.Module):
    def __init__(self, fft_size, hop_size, window_size, num_mel_bins, sample_rate, fmin, fmax):
        super().__init__()
        self.num_mel_bins = num_mel_bins
        self.sample_rate = sample_rate
        self.stft_processor = STFT(fft_size, hop_size, window_size)
        self.register_buffer("mel_filter", torch.from_numpy(librosa.filters.mel(sr=sample_rate, n_fft=fft_size, n_mels=num_mel_bins, fmin=fmin, fmax=fmax)).float())
    
    def compute_mel_spectrogram(self, waveform, normalization_fn=torch.log):
        assert torch.min(waveform) >= -1
        assert torch.max(waveform) <= 1
        
        magnitudes, _ = self.stft_processor.transform(waveform)
        return normalization_fn(torch.clamp(torch.matmul(self.mel_filter, magnitudes), min=1e-5))

class AudioLDM2(Pipeline):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.model = AudioLDM2Pipeline.from_pretrained(self.model_id, local_files_only=True, torch_dtype=torch.float16 if config.is_half else torch.float32).to(self.device)

    def load_scheduler(self):
        self.model.scheduler = DDIMScheduler.from_pretrained(self.model_id, subfolder="scheduler")

    def get_melspectrogram(self):
        return MelSpectrogramProcessor(fft_size=1024, hop_size=160, window_size=1024, num_mel_bins=64, sample_rate=16000, fmin=0, fmax=8000)

    def vae_encode(self, x):
        if x.shape[2] % 4: x = F.pad(x, (0, 0, 4 - (x.shape[2] % 4), 0))
        output = (self.model.vae.encode(x.half() if config.is_half else x.float()).latent_dist.mode() * self.model.vae.config.scaling_factor)
        return output.half() if config.is_half else output.float()

    def vae_decode(self, x):
        return self.model.vae.decode(1 / self.model.vae.config.scaling_factor * x).sample

    def decode_to_mel(self, x):
        tmp = self.model.mel_spectrogram_to_waveform(x[:, 0].detach().to(torch.float16 if config.is_half else torch.float32)).detach()

        if len(tmp.shape) == 1: tmp = tmp.unsqueeze(0)
        return tmp

    def encode_text(self, prompts, negative = False, save_compute = False, cond_length = 0, **kwargs):
        tokenizers, text_encoders = [self.model.tokenizer, self.model.tokenizer_2], [self.model.text_encoder, self.model.text_encoder_2]
        prompt_embeds_list, attention_mask_list = [], []

        for tokenizer, text_encoder in zip(tokenizers, text_encoders):
            text_inputs = tokenizer(prompts, padding="max_length" if (save_compute and negative) or isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast)) else True, max_length=tokenizer.model_max_length if (not save_compute) or ((not negative) or isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast, VitsTokenizer))) else cond_length, truncation=True, return_tensors="pt")
            text_input_ids = text_inputs.input_ids

            attention_mask = text_inputs.attention_mask
            untruncated_ids = tokenizer(prompts, padding="longest", return_tensors="pt").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1: -1])

            text_input_ids = text_input_ids.to(self.device)
            attention_mask = attention_mask.to(self.device)

            with torch.no_grad():
                if text_encoder.config.model_type == "clap":
                    prompt_embeds = text_encoder.get_text_features(text_input_ids, attention_mask=attention_mask)
                    prompt_embeds = prompt_embeds[:, None, :]
                    attention_mask = attention_mask.new_ones((len(prompts), 1))
                else: prompt_embeds = text_encoder(text_input_ids, attention_mask=attention_mask)[0]

            prompt_embeds_list.append(prompt_embeds)
            attention_mask_list.append(attention_mask)

        projection_output = self.model.projection_model(hidden_states=prompt_embeds_list[0], hidden_states_1=prompt_embeds_list[1], attention_mask=attention_mask_list[0], attention_mask_1=attention_mask_list[1])
        generated_prompt_embeds = self.model.generate_language_model(projection_output.hidden_states, attention_mask=projection_output.attention_mask, max_new_tokens=None)
        prompt_embeds = prompt_embeds.to(dtype=self.model.text_encoder_2.dtype, device=self.device)
        return generated_prompt_embeds.to(dtype=self.model.language_model.dtype, device=self.device), prompt_embeds, (attention_mask.to(device=self.device) if attention_mask is not None else torch.ones(prompt_embeds.shape[:2], dtype=torch.long, device=self.device))

    def get_variance(self, timestep, prev_timestep):
        alpha_prod_t = self.model.scheduler.alphas_cumprod[timestep]
        alpha_prod_t_prev = self.get_alpha_prod_t_prev(prev_timestep)
        return ((1 - alpha_prod_t_prev) / (1 - alpha_prod_t)) * (1 - alpha_prod_t / alpha_prod_t_prev)

    def get_alpha_prod_t_prev(self, prev_timestep):
        return self.model.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.model.scheduler.final_alpha_cumprod

    def unet_forward(self, sample, timestep, encoder_hidden_states, timestep_cond = None, class_labels = None, attention_mask = None, encoder_attention_mask = None, return_dict = True, cross_attention_kwargs = None, mid_block_additional_residual = None, replace_h_space = None, replace_skip_conns = None, zero_out_resconns = None):
        encoder_hidden_states_1 = class_labels
        class_labels = None
        encoder_attention_mask_1 = encoder_attention_mask
        encoder_attention_mask = None
        default_overall_up_factor = 2 ** self.model.unet.num_upsamplers
        forward_upsample_size = False
        upsample_size = None

        if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): forward_upsample_size = True

        if attention_mask is not None:
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        if encoder_attention_mask is not None:
            encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

        if encoder_attention_mask_1 is not None:
            encoder_attention_mask_1 = (1 - encoder_attention_mask_1.to(sample.dtype)) * -10000.0
            encoder_attention_mask_1 = encoder_attention_mask_1.unsqueeze(1)

        timesteps = timestep
        if not torch.is_tensor(timesteps):
            is_mps = sample.device.type == "mps"

            dtype = (torch.float16 if is_mps else torch.float32) if isinstance(timestep, float) else (torch.int16 if is_mps else torch.int32)

            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0: timesteps = timesteps[None].to(sample.device)

        emb = self.model.unet.time_embedding(self.model.unet.time_proj(timesteps.expand(sample.shape[0])).to(dtype=sample.dtype), timestep_cond)
        aug_emb = None

        if self.model.unet.class_embedding is not None:
            if class_labels is None: raise ValueError

            if self.model.unet.config.class_embed_type == "timestep": class_labels = self.model.unet.time_proj(class_labels).to(dtype=sample.dtype)
            class_emb = self.model.unet.class_embedding(class_labels).to(dtype=sample.dtype)

            if self.model.unet.config.class_embeddings_concat: emb = torch.cat([emb, class_emb], dim=-1)
            else: emb = emb + class_emb

        emb = emb + aug_emb if aug_emb is not None else emb
        if self.model.unet.time_embed_act is not None: emb = self.model.unet.time_embed_act(emb)

        sample = self.model.unet.conv_in(sample)
        down_block_res_samples = (sample,)

        for downsample_block in self.model.unet.down_blocks:
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: sample, res_samples = downsample_block(hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs, encoder_attention_mask=encoder_attention_mask, encoder_hidden_states_1=encoder_hidden_states_1, encoder_attention_mask_1=encoder_attention_mask_1)
            else: sample, res_samples = downsample_block(hidden_states=sample, temb=emb)

            down_block_res_samples += res_samples

        if self.model.unet.mid_block is not None: sample = self.model.unet.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs, encoder_attention_mask=encoder_attention_mask, encoder_hidden_states_1=encoder_hidden_states_1, encoder_attention_mask_1=encoder_attention_mask_1)

        if replace_h_space is None: h_space = sample.clone()
        else:
            h_space = replace_h_space
            sample = replace_h_space.clone()

        if mid_block_additional_residual is not None: sample = sample + mid_block_additional_residual
        extracted_res_conns = {}

        for i, upsample_block in enumerate(self.model.unet.up_blocks):
            is_final_block = i == len(self.model.unet.up_blocks) - 1
            res_samples = down_block_res_samples[-len(upsample_block.resnets):]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

            if replace_skip_conns is not None and replace_skip_conns.get(i): res_samples = replace_skip_conns.get(i)

            if zero_out_resconns is not None:
                if (type(zero_out_resconns) is int and i >= (zero_out_resconns - 1)) or type(zero_out_resconns) is list and i in zero_out_resconns: res_samples = [torch.zeros_like(x) for x in res_samples]

            extracted_res_conns[i] = res_samples
            if not is_final_block and forward_upsample_size: upsample_size = down_block_res_samples[-1].shape[2:]

            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: sample = upsample_block(hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, upsample_size=upsample_size, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, encoder_hidden_states_1=encoder_hidden_states_1, encoder_attention_mask_1=encoder_attention_mask_1)
            else: sample = upsample_block(hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size)

        if self.model.unet.conv_norm_out: sample = self.model.unet.conv_act(self.model.unet.conv_norm_out(sample))
        sample = self.model.unet.conv_out(sample)

        if not return_dict: return (sample,)
        return UNet2DConditionOutput(sample=sample), h_space, extracted_res_conns

def load_model(model, device):
    check_audioldm2(model)

    ldm_stable = AudioLDM2(model_id=os.path.join("assets", "models", "audioldm2", model), device=device, double_precision=False)
    ldm_stable.load_scheduler()

    if torch.cuda.is_available(): torch.cuda.empty_cache()
    elif torch.backends.mps.is_available(): torch.mps.empty_cache()

    return ldm_stable