File size: 12,636 Bytes
96134ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import math
import torch  

import torch.nn as nn
import torch.nn.functional as F

def length_to_mask(length, max_len=None, dtype=None, device=None):
    assert len(length.shape) == 1

    if max_len is None: max_len = length.max().long().item() 

    mask = torch.arange(max_len, device=length.device, dtype=length.dtype).expand(len(length), max_len) < length.unsqueeze(1)

    if dtype is None: dtype = length.dtype
    if device is None: device = length.device

    return torch.as_tensor(mask, dtype=dtype, device=device)

def get_padding_elem(L_in, stride, kernel_size, dilation):
    if stride > 1: padding = [math.floor(kernel_size / 2), math.floor(kernel_size / 2)]
    else:
        L_out = (math.floor((L_in - dilation * (kernel_size - 1) - 1) / stride) + 1)
        padding = [math.floor((L_in - L_out) / 2), math.floor((L_in - L_out) / 2)]

    return padding

class _BatchNorm1d(nn.Module):
    def __init__(self, input_shape=None, input_size=None, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True, combine_batch_time=False, skip_transpose=False):
        super().__init__()
        self.combine_batch_time = combine_batch_time
        self.skip_transpose = skip_transpose

        if input_size is None and skip_transpose: input_size = input_shape[1]
        elif input_size is None: input_size = input_shape[-1]

        self.norm = nn.BatchNorm1d(input_size, eps=eps, momentum=momentum, affine=affine, track_running_stats=track_running_stats)

    def forward(self, x):
        shape_or = x.shape

        if self.combine_batch_time:x = x.reshape(shape_or[0] * shape_or[1], shape_or[2]) if x.ndim == 3 else x.reshape(shape_or[0] * shape_or[1], shape_or[3], shape_or[2])
        elif not self.skip_transpose: x = x.transpose(-1, 1)

        x_n = self.norm(x)

        if self.combine_batch_time: x_n = x_n.reshape(shape_or)
        elif not self.skip_transpose: x_n = x_n.transpose(1, -1)

        return x_n

class _Conv1d(nn.Module):
    def __init__(self, out_channels, kernel_size, input_shape=None, in_channels=None, stride=1, dilation=1, padding="same", groups=1, bias=True, padding_mode="reflect", skip_transpose=False, weight_norm=False, conv_init=None, default_padding=0):
        super().__init__()
        self.kernel_size = kernel_size
        self.stride = stride
        self.dilation = dilation
        self.padding = padding
        self.padding_mode = padding_mode
        self.unsqueeze = False
        self.skip_transpose = skip_transpose

        if input_shape is None and in_channels is None: raise ValueError
        if in_channels is None: in_channels = self._check_input_shape(input_shape)

        self.in_channels = in_channels
        self.conv = nn.Conv1d(in_channels, out_channels, self.kernel_size, stride=self.stride, dilation=self.dilation, padding=default_padding, groups=groups, bias=bias)

        if conv_init == "kaiming": nn.init.kaiming_normal_(self.conv.weight)
        elif conv_init == "zero": nn.init.zeros_(self.conv.weight)
        elif conv_init == "normal": nn.init.normal_(self.conv.weight, std=1e-6)

        if weight_norm: self.conv = nn.utils.weight_norm(self.conv)

    def forward(self, x):
        if not self.skip_transpose: x = x.transpose(1, -1)
        if self.unsqueeze: x = x.unsqueeze(1)

        if self.padding == "same": x = self._manage_padding(x, self.kernel_size, self.dilation, self.stride)
        elif self.padding == "causal": x = F.pad(x, ((self.kernel_size - 1) * self.dilation, 0))
        elif self.padding == "valid": pass
        else: raise ValueError

        wx = self.conv(x)

        if self.unsqueeze: wx = wx.squeeze(1)
        if not self.skip_transpose: wx = wx.transpose(1, -1)

        return wx

    def _manage_padding(self, x, kernel_size, dilation, stride):
        return F.pad(x, get_padding_elem(self.in_channels, stride, kernel_size, dilation), mode=self.padding_mode)

    def _check_input_shape(self, shape):
        if len(shape) == 2:
            self.unsqueeze = True
            in_channels = 1
        elif self.skip_transpose: in_channels = shape[1]
        elif len(shape) == 3: in_channels = shape[2]
        else: raise ValueError

        if not self.padding == "valid" and self.kernel_size % 2 == 0: raise ValueError
        return in_channels

    def remove_weight_norm(self):
        self.conv = nn.utils.remove_weight_norm(self.conv)

class Linear(torch.nn.Module):
    def __init__(self, n_neurons, input_shape=None, input_size=None, bias=True, max_norm=None, combine_dims=False):
        super().__init__()
        self.max_norm = max_norm
        self.combine_dims = combine_dims

        if input_shape is None and input_size is None: raise ValueError
        if input_size is None:
            input_size = input_shape[-1]
            if len(input_shape) == 4 and self.combine_dims: input_size = input_shape[2] * input_shape[3]

        self.w = nn.Linear(input_size, n_neurons, bias=bias)

    def forward(self, x):
        if x.ndim == 4 and self.combine_dims: x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3])
        if self.max_norm is not None: self.w.weight.data = torch.renorm(self.w.weight.data, p=2, dim=0, maxnorm=self.max_norm)

        return self.w(x)

class Conv1d(_Conv1d):
    def __init__(self, *args, **kwargs):
        super().__init__(skip_transpose=True, *args, **kwargs)

class BatchNorm1d(_BatchNorm1d):
    def __init__(self, *args, **kwargs):
        super().__init__(skip_transpose=True, *args, **kwargs)

class TDNNBlock(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, dilation, activation=nn.ReLU, groups=1, dropout=0.0):
        super().__init__()
        self.conv = Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, dilation=dilation, groups=groups)
        self.activation = activation()
        self.norm = BatchNorm1d(input_size=out_channels)
        self.dropout = nn.Dropout1d(p=dropout)

    def forward(self, x):
        return self.dropout(self.norm(self.activation(self.conv(x))))

class Res2NetBlock(torch.nn.Module):
    def __init__(self, in_channels, out_channels, scale=8, kernel_size=3, dilation=1, dropout=0.0):
        super().__init__()
        assert in_channels % scale == 0
        assert out_channels % scale == 0
        in_channel = in_channels // scale
        hidden_channel = out_channels // scale
        self.blocks = nn.ModuleList([TDNNBlock(in_channel, hidden_channel, kernel_size=kernel_size, dilation=dilation, dropout=dropout) for _ in range(scale - 1)])
        self.scale = scale

    def forward(self, x):
        y = []

        for i, x_i in enumerate(torch.chunk(x, self.scale, dim=1)):
            if i == 0: y_i = x_i
            elif i == 1: y_i = self.blocks[i - 1](x_i)
            else: y_i = self.blocks[i - 1](x_i + y_i)

            y.append(y_i)

        return torch.cat(y, dim=1)

class SEBlock(nn.Module):
    def __init__(self, in_channels, se_channels, out_channels):
        super().__init__()

        self.conv1 = Conv1d(in_channels=in_channels, out_channels=se_channels, kernel_size=1)
        self.relu = torch.nn.ReLU(inplace=True)
        self.conv2 = Conv1d(in_channels=se_channels, out_channels=out_channels, kernel_size=1)
        self.sigmoid = torch.nn.Sigmoid()

    def forward(self, x, lengths=None):
        L = x.shape[-1]

        if lengths is not None:
            mask = length_to_mask(lengths * L, max_len=L, device=x.device).unsqueeze(1)
            s = (x * mask).sum(dim=2, keepdim=True) / mask.sum(dim=2, keepdim=True)
        else: s = x.mean(dim=2, keepdim=True)

        return self.sigmoid(self.conv2(self.relu(self.conv1(s)))) * x

class AttentiveStatisticsPooling(nn.Module):
    def __init__(self, channels, attention_channels=128, global_context=True):
        super().__init__()
        self.eps = 1e-12
        self.global_context = global_context
        self.tdnn = TDNNBlock(channels * 3, attention_channels, 1, 1) if global_context else TDNNBlock(channels, attention_channels, 1, 1)
        self.tanh = nn.Tanh()
        self.conv = Conv1d(in_channels=attention_channels, out_channels=channels, kernel_size=1)

    def forward(self, x, lengths=None):
        L = x.shape[-1]

        def _compute_statistics(x, m, dim=2, eps=self.eps):
            mean = (m * x).sum(dim)
            return mean, torch.sqrt((m * (x - mean.unsqueeze(dim)).pow(2)).sum(dim).clamp(eps))

        if lengths is None: lengths = torch.ones(x.shape[0], device=x.device)
        mask = length_to_mask(lengths * L, max_len=L, device=x.device).unsqueeze(1)

        if self.global_context:
            mean, std = _compute_statistics(x, mask / mask.sum(dim=2, keepdim=True).float())
            attn = torch.cat([x, mean.unsqueeze(2).repeat(1, 1, L), std.unsqueeze(2).repeat(1, 1, L)], dim=1)
        else: attn = x

        mean, std = _compute_statistics(x, F.softmax(self.conv(self.tanh(self.tdnn(attn))).masked_fill(mask == 0, float("-inf")), dim=2))
        return torch.cat((mean, std), dim=1).unsqueeze(2)

class SERes2NetBlock(nn.Module):
    def __init__(self, in_channels, out_channels, res2net_scale=8, se_channels=128, kernel_size=1, dilation=1, activation=torch.nn.ReLU, groups=1, dropout=0.0):
        super().__init__()
        self.out_channels = out_channels
        self.tdnn1 = TDNNBlock(in_channels, out_channels, kernel_size=1, dilation=1, activation=activation, groups=groups, dropout=dropout)
        self.res2net_block = Res2NetBlock(out_channels, out_channels, res2net_scale, kernel_size, dilation)
        self.tdnn2 = TDNNBlock(out_channels, out_channels, kernel_size=1, dilation=1, activation=activation, groups=groups, dropout=dropout)
        self.se_block = SEBlock(out_channels, se_channels, out_channels)

        self.shortcut = None
        if in_channels != out_channels: self.shortcut = Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=1)

    def forward(self, x, lengths=None):
        residual = x
        if self.shortcut: residual = self.shortcut(x)

        return self.se_block(self.tdnn2(self.res2net_block(self.tdnn1(x))), lengths) + residual

class ECAPA_TDNN(torch.nn.Module):
    def __init__(self, input_size, device="cpu", lin_neurons=192, activation=torch.nn.ReLU, channels=[512, 512, 512, 512, 1536], kernel_sizes=[5, 3, 3, 3, 1], dilations=[1, 2, 3, 4, 1], attention_channels=128, res2net_scale=8, se_channels=128, global_context=True, groups=[1, 1, 1, 1, 1], dropout=0.0):
        super().__init__()
        assert len(channels) == len(kernel_sizes)
        assert len(channels) == len(dilations)

        self.channels = channels
        self.blocks = nn.ModuleList()

        self.blocks.append(TDNNBlock(input_size, channels[0], kernel_sizes[0], dilations[0], activation, groups[0], dropout))

        for i in range(1, len(channels) - 1):
            self.blocks.append(SERes2NetBlock(channels[i - 1], channels[i], res2net_scale=res2net_scale, se_channels=se_channels, kernel_size=kernel_sizes[i], dilation=dilations[i], activation=activation, groups=groups[i], dropout=dropout))

        self.mfa = TDNNBlock(channels[-2] * (len(channels) - 2), channels[-1], kernel_sizes[-1], dilations[-1], activation, groups=groups[-1], dropout=dropout)
        self.asp = AttentiveStatisticsPooling(channels[-1], attention_channels=attention_channels, global_context=global_context)
        self.asp_bn = BatchNorm1d(input_size=channels[-1] * 2)
        self.fc = Conv1d(in_channels=channels[-1] * 2, out_channels=lin_neurons, kernel_size=1)

    def forward(self, x, lengths=None):
        x = x.transpose(1, 2)

        xl = []
        for layer in self.blocks:
            try:
                x = layer(x, lengths=lengths)
            except TypeError:
                x = layer(x)

            xl.append(x)

        return self.fc(self.asp_bn(self.asp(self.mfa(torch.cat(xl[1:], dim=1)), lengths=lengths))).transpose(1, 2)

class Classifier(torch.nn.Module):
    def __init__(self, input_size, device="cpu", lin_blocks=0, lin_neurons=192, out_neurons=1211):
        super().__init__()
        self.blocks = nn.ModuleList()

        for _ in range(lin_blocks):
            self.blocks.extend([_BatchNorm1d(input_size=input_size), Linear(input_size=input_size, n_neurons=lin_neurons)])
            input_size = lin_neurons

        self.weight = nn.Parameter(torch.FloatTensor(out_neurons, input_size, device=device))
        nn.init.xavier_uniform_(self.weight)

    def forward(self, x):
        for layer in self.blocks:
            x = layer(x)

        return F.linear(F.normalize(x.squeeze(1)), F.normalize(self.weight)).unsqueeze(1)