File size: 17,174 Bytes
96134ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
import numpy as np

from sortedcontainers import SortedList

PYANNOTE_SEGMENT = 'segment'


class Timeline:
    @classmethod
    def from_df(cls, df, uri = None):
        return cls(segments=list(df[PYANNOTE_SEGMENT]), uri=uri)

    def __init__(self, segments = None, uri = None):
        if segments is None: segments = ()
        segments_set = set([segment for segment in segments if segment])

        self.segments_set_ = segments_set
        self.segments_list_ = SortedList(segments_set)
        self.segments_boundaries_ = SortedList((boundary for segment in segments_set for boundary in segment))
        self.uri = uri

    def __len__(self):
        return len(self.segments_set_)

    def __nonzero__(self):
        return self.__bool__()

    def __bool__(self):
        return len(self.segments_set_) > 0

    def __iter__(self):
        return iter(self.segments_list_)

    def __getitem__(self, k):
        return self.segments_list_[k]

    def __eq__(self, other):
        return self.segments_set_ == other.segments_set_

    def __ne__(self, other):
        return self.segments_set_ != other.segments_set_

    def index(self, segment):
        return self.segments_list_.index(segment)

    def add(self, segment):
        segments_set_ = self.segments_set_
        if segment in segments_set_ or not segment: return self

        segments_set_.add(segment)
        self.segments_list_.add(segment)

        segments_boundaries_ = self.segments_boundaries_
        segments_boundaries_.add(segment.start)
        segments_boundaries_.add(segment.end)

        return self

    def remove(self, segment):
        segments_set_ = self.segments_set_
        if segment not in segments_set_: return self

        segments_set_.remove(segment)
        self.segments_list_.remove(segment)

        segments_boundaries_ = self.segments_boundaries_
        segments_boundaries_.remove(segment.start)
        segments_boundaries_.remove(segment.end)

        return self

    def discard(self, segment):
        return self.remove(segment)

    def __ior__(self, timeline):
        return self.update(timeline)

    def update(self, timeline):
        segments_set = self.segments_set_
        segments_set |= timeline.segments_set_

        self.segments_list_ = SortedList(segments_set)
        self.segments_boundaries_ = SortedList((boundary for segment in segments_set for boundary in segment))

        return self

    def __or__(self, timeline):
        return self.union(timeline)

    def union(self, timeline):
        return Timeline(segments=self.segments_set_ | timeline.segments_set_, uri=self.uri)

    def co_iter(self, other):
        for segment in self.segments_list_:
            temp = Segment(start=segment.end, end=segment.end)

            for other_segment in other.segments_list_.irange(maximum=temp):
                if segment.intersects(other_segment): yield segment, other_segment

    def crop_iter(self, support, mode = 'intersection', returns_mapping = False):
        if mode not in {'loose', 'strict', 'intersection'}: raise ValueError
        if not isinstance(support, (Segment, Timeline)): raise TypeError

        if isinstance(support, Segment):
            support = Timeline(segments=([support] if support else []), uri=self.uri)

            for yielded in self.crop_iter(support, mode=mode, returns_mapping=returns_mapping):
                yield yielded

            return

        support = support.support()

        if mode == 'loose':
            for segment, _ in self.co_iter(support):
                yield segment

            return

        if mode == 'strict':
            for segment, other_segment in self.co_iter(support):
                if segment in other_segment: yield segment

            return

        for segment, other_segment in self.co_iter(support):
            mapped_to = segment & other_segment
            if not mapped_to: continue

            if returns_mapping: yield segment, mapped_to
            else: yield mapped_to

    def crop(self, support, mode = 'intersection', returns_mapping = False):
        if mode == 'intersection' and returns_mapping:
            segments, mapping = [], {}
            
            for segment, mapped_to in self.crop_iter(support, mode='intersection', returns_mapping=True):
                segments.append(mapped_to)
                mapping[mapped_to] = mapping.get(mapped_to, list()) + [segment]

            return Timeline(segments=segments, uri=self.uri), mapping

        return Timeline(segments=self.crop_iter(support, mode=mode), uri=self.uri)

    def overlapping(self, t):
        return list(self.overlapping_iter(t))

    def overlapping_iter(self, t):
        for segment in self.segments_list_.irange(maximum=Segment(start=t, end=t)):
            if segment.overlaps(t): yield segment

    def get_overlap(self):
        overlaps_tl = Timeline(uri=self.uri)

        for s1, s2 in self.co_iter(self):
            if s1 == s2: continue

            overlaps_tl.add(s1 & s2)

        return overlaps_tl.support()

    def extrude(self, removed, mode = 'intersection'):
        if isinstance(removed, Segment): removed = Timeline([removed])

        if mode == "loose": mode = "strict"
        elif mode == "strict": mode = "loose"

        return self.crop(removed.gaps(support=Timeline([self.extent()], uri=self.uri)), mode=mode)

    def __str__(self):
        n = len(self.segments_list_)
        string = "["

        for i, segment in enumerate(self.segments_list_):
            string += str(segment)
            string += "\n " if i + 1 < n else ""

        string += "]"
        return string

    def __repr__(self):
        return "<Timeline(uri=%s, segments=%s)>" % (self.uri, list(self.segments_list_))

    def __contains__(self, included):
        if isinstance(included, Segment): return included in self.segments_set_
        elif isinstance(included, Timeline): return self.segments_set_.issuperset(included.segments_set_)
        else: raise TypeError

    def empty(self):
        return Timeline(uri=self.uri)

    def covers(self, other):
        gaps = self.gaps(support=other.extent())

        for _ in gaps.co_iter(other):
            return False

        return True

    def copy(self, segment_func = None):
        if segment_func is None: return Timeline(segments=self.segments_list_, uri=self.uri)
        return Timeline(segments=[segment_func(s) for s in self.segments_list_], uri=self.uri)

    def extent(self):
        if self.segments_set_:
            segments_boundaries_ = self.segments_boundaries_
            return Segment(start=segments_boundaries_[0], end=segments_boundaries_[-1])

        return Segment(start=0.0, end=0.0)

    def support_iter(self, collar = 0.0):
        if not self: return

        new_segment = self.segments_list_[0]

        for segment in self:
            possible_gap = segment ^ new_segment

            if not possible_gap or possible_gap.duration < collar: new_segment |= segment
            else:
                yield new_segment
                new_segment = segment

        yield new_segment

    def support(self, collar = 0.):
        return Timeline(segments=self.support_iter(collar), uri=self.uri)

    def duration(self):
        return sum(s.duration for s in self.support_iter())

    def gaps_iter(self, support = None):
        if support is None: support = self.extent()
        if not isinstance(support, (Segment, Timeline)): raise TypeError

        if isinstance(support, Segment):
            end = support.start

            for segment in self.crop(support, mode='intersection').support():
                gap = Segment(start=end, end=segment.start)
                if gap: yield gap

                end = segment.end

            gap = Segment(start=end, end=support.end)
            if gap: yield gap
        elif isinstance(support, Timeline):
            for segment in support.support():
                for gap in self.gaps_iter(support=segment):
                    yield gap

    def gaps(self, support = None):
        return Timeline(segments=self.gaps_iter(support=support), uri=self.uri)

    def segmentation(self):
        support = self.support()
        timestamps = set([])

        for (start, end) in self:
            timestamps.add(start)
            timestamps.add(end)

        timestamps = sorted(timestamps)
        if len(timestamps) == 0: return Timeline(uri=self.uri)

        segments = []
        start = timestamps[0]

        for end in timestamps[1:]:
            segment = Segment(start=start, end=end)

            if segment and support.overlapping(segment.middle): segments.append(segment)
            start = end

        return Timeline(segments=segments, uri=self.uri)

    def _iter_uem(self):
        uri = self.uri if self.uri else "<NA>"

        for segment in self:
            yield f"{uri} 1 {segment.start:.3f} {segment.end:.3f}\n"

    def to_uem(self):
        return "".join([line for line in self._iter_uem()])

    def write_uem(self, file):
        for line in self._iter_uem():
            file.write(line)

    def _repr_png_(self):
        return None

class Segment:
    def __init__(self, start, end):
        self.start = start
        self.end = end

    @staticmethod
    def set_precision(ndigits = None):
        global AUTO_ROUND_TIME, SEGMENT_PRECISION

        if ndigits is None:
            AUTO_ROUND_TIME = False
            SEGMENT_PRECISION = 1e-6
        else:
            AUTO_ROUND_TIME = True
            SEGMENT_PRECISION = 10 ** (-ndigits)

    def __bool__(self):
        return bool((self.end - self.start) > SEGMENT_PRECISION)

    def __post_init__(self):
        if AUTO_ROUND_TIME:
            object.__setattr__(self, 'start', int(self.start / SEGMENT_PRECISION + 0.5) * SEGMENT_PRECISION)
            object.__setattr__(self, 'end', int(self.end / SEGMENT_PRECISION + 0.5) * SEGMENT_PRECISION)

    @property
    def duration(self):
        return self.end - self.start if self else 0.

    @property
    def middle(self):
        return .5 * (self.start + self.end)

    def __iter__(self):
        yield self.start
        yield self.end

    def copy(self):
        return Segment(start=self.start, end=self.end)

    def __contains__(self, other):
        return (self.start <= other.start) and (self.end >= other.end)

    def __and__(self, other):
        return Segment(start=max(self.start, other.start), end=min(self.end, other.end))

    def intersects(self, other):
        return (self.start < other.start and other.start < self.end - SEGMENT_PRECISION) or (self.start > other.start and self.start < other.end - SEGMENT_PRECISION) or (self.start == other.start)

    def overlaps(self, t):
        return self.start <= t and self.end >= t

    def __or__(self, other):
        if not self: return other
        if not other: return self

        return Segment(start=min(self.start, other.start), end=max(self.end, other.end))

    def __xor__(self, other):
        if (not self) or (not other): raise ValueError

        return Segment(start=min(self.end, other.end), end=max(self.start, other.start))

    def _str_helper(self, seconds):
        from datetime import timedelta

        negative = seconds < 0
        td = timedelta(seconds=abs(seconds))

        hours, remainder = divmod(td.seconds + 86400 * td.days, 3600)
        minutes, seconds = divmod(remainder, 60)

        return '%s%02d:%02d:%02d.%03d' % ('-' if negative else ' ', hours, minutes, seconds, td.microseconds / 1000)

    def __str__(self):
        if self: return '[%s --> %s]' % (self._str_helper(self.start), self._str_helper(self.end))
        return '[]'

    def __repr__(self):
        return '<Segment(%g, %g)>' % (self.start, self.end)

    def _repr_png_(self):
        return None

class SlidingWindow:
    def __init__(self, duration=0.030, step=0.010, start=0.000, end=None):
        if duration <= 0: raise ValueError
        self.__duration = duration
        if step <= 0: raise ValueError
        
        self.__step = step
        self.__start = start

        if end is None: self.__end = np.inf
        else:
            if end <= start: raise ValueError
            self.__end = end

        self.__i = -1

    @property
    def start(self):
        return self.__start

    @property
    def end(self):
        return self.__end

    @property
    def step(self):
        return self.__step

    @property
    def duration(self):
        return self.__duration

    def closest_frame(self, t):
        return int(np.rint((t - self.__start - .5 * self.__duration) / self.__step))

    def samples(self, from_duration, mode = 'strict'):
        if mode == 'strict': return int(np.floor((from_duration - self.duration) / self.step)) + 1
        elif mode == 'loose': return int(np.floor((from_duration + self.duration) / self.step))
        elif mode == 'center': return int(np.rint((from_duration / self.step)))

    def crop(self, focus, mode = 'loose', fixed = None, return_ranges = False):
        if not isinstance(focus, (Segment, Timeline)): raise TypeError

        if isinstance(focus, Timeline):
            if fixed is not None: raise ValueError

            if return_ranges:
                ranges = []

                for i, s in enumerate(focus.support()):
                    rng = self.crop(s, mode=mode, fixed=fixed, return_ranges=True)

                    if i == 0 or rng[0][0] > ranges[-1][1]: ranges += rng
                    else: ranges[-1][1] = rng[0][1]

                return ranges

            return np.unique(np.hstack([self.crop(s, mode=mode, fixed=fixed, return_ranges=False) for s in focus.support()]))

        if mode == 'loose':
            i = int(np.ceil((focus.start - self.duration - self.start) / self.step))

            if fixed is None:
                j = int(np.floor((focus.end - self.start) / self.step))
                rng = (i, j + 1)
            else:
                n = self.samples(fixed, mode='loose')
                rng = (i, i + n)
        elif mode == 'strict':
            i = int(np.ceil((focus.start - self.start) / self.step))

            if fixed is None:
                j = int(np.floor((focus.end - self.duration - self.start) / self.step))
                rng = (i, j + 1)
            else:
                n = self.samples(fixed, mode='strict')
                rng = (i, i + n)
        elif mode == 'center':
            i = self.closest_frame(focus.start)

            if fixed is None:
                j = self.closest_frame(focus.end)
                rng = (i, j + 1)
            else:
                n = self.samples(fixed, mode='center')
                rng = (i, i + n)
        else: raise ValueError

        if return_ranges: return [list(rng)]
        return np.array(range(*rng), dtype=np.int64)

    def segmentToRange(self, segment):
        return self.segment_to_range(segment)

    def segment_to_range(self, segment):
        return self.closest_frame(segment.start), int(segment.duration / self.step) + 1

    def rangeToSegment(self, i0, n):
        return self.range_to_segment(i0, n)

    def range_to_segment(self, i0, n):
        start = self.__start + (i0 - .5) * self.__step + .5 * self.__duration

        if i0 == 0: start = self.start
        return Segment(start, start + (n * self.__step))

    def samplesToDuration(self, nSamples):
        return self.samples_to_duration(nSamples)

    def samples_to_duration(self, n_samples):
        return self.range_to_segment(0, n_samples).duration

    def durationToSamples(self, duration):
        return self.duration_to_samples(duration)

    def duration_to_samples(self, duration):
        return self.segment_to_range(Segment(0, duration))[1]

    def __getitem__(self, i):
        start = self.__start + i * self.__step
        if start >= self.__end: return None

        return Segment(start=start, end=start + self.__duration)

    def next(self):
        return self.__next__()

    def __next__(self):
        self.__i += 1
        window = self[self.__i]

        if window: return window
        else: raise StopIteration()

    def __iter__(self):
        self.__i = -1
        return self

    def __len__(self):
        if np.isinf(self.__end): raise ValueError
        i = self.closest_frame(self.__end)

        while (self[i]):
            i += 1

        length = i
        return length

    def copy(self):
        return self.__class__(duration=self.duration, step=self.step, start=self.start, end=self.end)

    def __call__(self, support, align_last = False):
        if isinstance(support, Timeline): segments = support
        elif isinstance(support, Segment): segments = Timeline(segments=[support])
        else: raise TypeError

        for segment in segments:
            if segment.duration < self.duration: continue

            for s in SlidingWindow(duration=self.duration, step=self.step, start=segment.start, end=segment.end):
                if s in segment:
                    yield s
                    last = s

            if align_last and last.end < segment.end: yield Segment(start=segment.end - self.duration, end=segment.end)