File size: 14,218 Bytes
96134ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
import re
import sys
import codecs
import librosa
import logging

import numpy as np
import soundfile as sf

from pydub import AudioSegment

sys.path.append(os.getcwd())

from main.tools import huggingface
from main.configs.config import Config

for l in ["httpx", "httpcore"]:
    logging.getLogger(l).setLevel(logging.ERROR)

translations = Config().translations


def check_predictors(method, f0_onnx=False):
    if f0_onnx and method not in ["harvest", "dio"]: method += "-onnx"

    def download(predictors):
        if not os.path.exists(os.path.join("assets", "models", "predictors", predictors)): huggingface.HF_download_file(codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/cerqvpgbef/", "rot13") + predictors, os.path.join("assets", "models", "predictors", predictors))

    model_dict = {**dict.fromkeys(["rmvpe", "rmvpe-legacy"], "rmvpe.pt"), **dict.fromkeys(["rmvpe-onnx", "rmvpe-legacy-onnx"], "rmvpe.onnx"), **dict.fromkeys(["fcpe"], "fcpe.pt"), **dict.fromkeys(["fcpe-legacy"], "fcpe_legacy.pt"), **dict.fromkeys(["fcpe-onnx"], "fcpe.onnx"), **dict.fromkeys(["fcpe-legacy-onnx"], "fcpe_legacy.onnx"), **dict.fromkeys(["crepe-full", "mangio-crepe-full"], "crepe_full.pth"), **dict.fromkeys(["crepe-full-onnx", "mangio-crepe-full-onnx"], "crepe_full.onnx"), **dict.fromkeys(["crepe-large", "mangio-crepe-large"], "crepe_large.pth"), **dict.fromkeys(["crepe-large-onnx", "mangio-crepe-large-onnx"], "crepe_large.onnx"), **dict.fromkeys(["crepe-medium", "mangio-crepe-medium"], "crepe_medium.pth"), **dict.fromkeys(["crepe-medium-onnx", "mangio-crepe-medium-onnx"], "crepe_medium.onnx"), **dict.fromkeys(["crepe-small", "mangio-crepe-small"], "crepe_small.pth"), **dict.fromkeys(["crepe-small-onnx", "mangio-crepe-small-onnx"], "crepe_small.onnx"), **dict.fromkeys(["crepe-tiny", "mangio-crepe-tiny"], "crepe_tiny.pth"), **dict.fromkeys(["crepe-tiny-onnx", "mangio-crepe-tiny-onnx"], "crepe_tiny.onnx"), **dict.fromkeys(["harvest", "dio"], "world.pth")}

    if "hybrid" in method:
        methods_str = re.search("hybrid\[(.+)\]", method)
        if methods_str: methods = [method.strip() for method in methods_str.group(1).split("+")]

        for method in methods:
            if method in model_dict: download(model_dict[method])
    elif method in model_dict: download(model_dict[method])

def check_embedders(hubert, embedders_mode="fairseq"):
    huggingface_url = codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/rzorqqref/", "rot13")
    if embedders_mode == "spin": embedders_mode, hubert = "transformers", "spin"

    if hubert in ["contentvec_base", "hubert_base", "japanese_hubert_base", "korean_hubert_base", "chinese_hubert_base", "portuguese_hubert_base", "spin"]:
        if embedders_mode == "fairseq": hubert += ".pt"
        elif embedders_mode == "onnx": hubert += ".onnx"

        model_path = os.path.join("assets", "models", "embedders", hubert)

        if embedders_mode == "fairseq": 
            if not os.path.exists(model_path): huggingface.HF_download_file("".join([huggingface_url, "fairseq/", hubert]), model_path)
        elif embedders_mode == "onnx": 
            if not os.path.exists(model_path): huggingface.HF_download_file("".join([huggingface_url, "onnx/", hubert]), model_path)
        elif embedders_mode == "transformers":
            url, hubert = ("transformers/", hubert) if hubert != "spin" else ("spin", "")

            bin_file = os.path.join(model_path, "model.safetensors")
            config_file = os.path.join(model_path, "config.json")

            os.makedirs(model_path, exist_ok=True)

            if not os.path.exists(bin_file): huggingface.HF_download_file("".join([huggingface_url, url, hubert, "/model.safetensors"]), bin_file)
            if not os.path.exists(config_file): huggingface.HF_download_file("".join([huggingface_url, url, hubert, "/config.json"]), config_file)
        else: raise ValueError(translations["option_not_valid"])
    
def check_spk_diarization(model_size):
    whisper_model = os.path.join("assets", "models", "speaker_diarization", "models", f"{model_size}.pt")
    if not os.path.exists(whisper_model): huggingface.HF_download_file("".join([codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/fcrnxre_qvnevmngvba/", "rot13"), model_size, ".pt"]), whisper_model)

    speechbrain_path = os.path.join("assets", "models", "speaker_diarization", "models", "speechbrain")
    if not os.path.exists(speechbrain_path): os.makedirs(speechbrain_path, exist_ok=True)

    for f in ["classifier.ckpt", "config.json", "embedding_model.ckpt", "hyperparams.yaml", "mean_var_norm_emb.ckpt"]:
        speechbrain_model = os.path.join(speechbrain_path, f)

        if not os.path.exists(speechbrain_model): huggingface.HF_download_file(codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/fcrnxre_qvnevmngvba/fcrrpuoenva/", "rot13") + f, speechbrain_model)

def check_audioldm2(model):
    for f in ["feature_extractor", "language_model", "projection_model", "scheduler", "text_encoder", "text_encoder_2", "tokenizer", "tokenizer_2", "unet", "vae", "vocoder"]:
        folder_path = os.path.join("assets", "models", "audioldm2", model, f)

        if not os.path.exists(folder_path): os.makedirs(folder_path, exist_ok=True)

    for f in ["feature_extractor/preprocessor_config.json","language_model/config.json","language_model/model.safetensors","model_index.json","projection_model/config.json","projection_model/diffusion_pytorch_model.safetensors","scheduler/scheduler_config.json","text_encoder/config.json","text_encoder/model.safetensors","text_encoder_2/config.json","text_encoder_2/model.safetensors","tokenizer/merges.txt","tokenizer/special_tokens_map.json","tokenizer/tokenizer.json","tokenizer/tokenizer_config.json","tokenizer/vocab.json","tokenizer_2/special_tokens_map.json","tokenizer_2/spiece.model","tokenizer_2/tokenizer.json","tokenizer_2/tokenizer_config.json","unet/config.json","unet/diffusion_pytorch_model.safetensors","vae/config.json","vae/diffusion_pytorch_model.safetensors","vocoder/config.json","vocoder/model.safetensors"]:
        model_path = os.path.join("assets", "models", "audioldm2", model, f)

        if not os.path.exists(model_path): huggingface.HF_download_file("".join([codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/nhqvbyqz/", "rot13"), model, "/", f]), model_path)

def load_audio(logger, file, sample_rate=16000, formant_shifting=False, formant_qfrency=0.8, formant_timbre=0.8):
    try:
        file = file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
        if not os.path.isfile(file): raise FileNotFoundError(translations["not_found"].format(name=file))

        try:
            logger.debug(translations['read_sf'])
            audio, sr = sf.read(file, dtype=np.float32)
        except:
            logger.debug(translations['read_librosa'])
            audio, sr = librosa.load(file, sr=None)

        if len(audio.shape) > 1: audio = librosa.to_mono(audio.T)
        if sr != sample_rate: audio = librosa.resample(audio, orig_sr=sr, target_sr=sample_rate, res_type="soxr_vhq")

        if formant_shifting:
            from main.library.algorithm.stftpitchshift import StftPitchShift

            pitchshifter = StftPitchShift(1024, 32, sample_rate)
            audio = pitchshifter.shiftpitch(audio, factors=1, quefrency=formant_qfrency * 1e-3, distortion=formant_timbre)
    except Exception as e:
        raise RuntimeError(f"{translations['errors_loading_audio']}: {e}")
    
    return audio.flatten()

def pydub_convert(audio):
    samples = np.frombuffer(audio.raw_data, dtype=np.int16)
    if samples.dtype != np.int16: samples = (samples * 32767).astype(np.int16)

    return AudioSegment(samples.tobytes(), frame_rate=audio.frame_rate, sample_width=samples.dtype.itemsize, channels=audio.channels)

def pydub_load(input_path):
    try:
        if input_path.endswith(".wav"): audio = AudioSegment.from_wav(input_path)
        elif input_path.endswith(".mp3"): audio = AudioSegment.from_mp3(input_path)
        elif input_path.endswith(".ogg"): audio = AudioSegment.from_ogg(input_path)
        else: audio = AudioSegment.from_file(input_path)
    except:
        audio = AudioSegment.from_file(input_path)
        
    return audio

def load_embedders_model(embedder_model, embedders_mode="fairseq", providers=None):
    if embedders_mode == "fairseq": embedder_model += ".pt"
    elif embedders_mode == "onnx": embedder_model += ".onnx"
    elif embedders_mode == "spin": embedders_mode, embedder_model = "transformers", "spin"

    embedder_model_path = os.path.join("assets", "models", "embedders", embedder_model)
    if not os.path.exists(embedder_model_path): raise FileNotFoundError(f"{translations['not_found'].format(name=translations['model'])}: {embedder_model}")

    try:
        if embedders_mode == "fairseq":
            from main.library.architectures import fairseq

            models, saved_cfg, _ = fairseq.load_model(embedder_model_path)
            
            embed_suffix = ".pt"
            hubert_model = models[0]
        elif embedders_mode == "onnx":
            import onnxruntime

            sess_options = onnxruntime.SessionOptions()
            sess_options.log_severity_level = 3

            embed_suffix, saved_cfg = ".onnx", None
            hubert_model = onnxruntime.InferenceSession(embedder_model_path, sess_options=sess_options, providers=providers)
        elif embedders_mode == "transformers":
            from torch import nn
            from transformers import HubertModel

            class HubertModelWithFinalProj(HubertModel):
                def __init__(self, config):
                    super().__init__(config)
                    self.final_proj = nn.Linear(config.hidden_size, config.classifier_proj_size)
                    
            embed_suffix, saved_cfg = ".safetensors", None
            hubert_model = HubertModelWithFinalProj.from_pretrained(embedder_model_path)
        else: raise ValueError(translations["option_not_valid"])
    except Exception as e:
        raise RuntimeError(translations["read_model_error"].format(e=e))

    return hubert_model, saved_cfg, embed_suffix

def cut(audio, sr, db_thresh=-60, min_interval=250):
    from main.inference.preprocess import Slicer, get_rms

    class Slicer2(Slicer):
        def slice2(self, waveform):
            samples = waveform.mean(axis=0) if len(waveform.shape) > 1 else waveform

            if samples.shape[0] <= self.min_length: return [(waveform, 0, samples.shape[0])]
            rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)

            sil_tags = []
            silence_start, clip_start = None, 0

            for i, rms in enumerate(rms_list):
                if rms < self.threshold:
                    if silence_start is None: silence_start = i
                    continue

                if silence_start is None: continue

                is_leading_silence = silence_start == 0 and i > self.max_sil_kept
                need_slice_middle = (i - silence_start >= self.min_interval and i - clip_start >= self.min_length)

                if not is_leading_silence and not need_slice_middle:
                    silence_start = None
                    continue

                if i - silence_start <= self.max_sil_kept:
                    pos = rms_list[silence_start : i + 1].argmin() + silence_start
                    sil_tags.append((0, pos) if silence_start == 0 else (pos, pos))   
                    clip_start = pos
                elif i - silence_start <= self.max_sil_kept * 2:
                    pos = rms_list[i - self.max_sil_kept : silence_start + self.max_sil_kept + 1].argmin()
                    pos += i - self.max_sil_kept

                    pos_r = (rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept)

                    if silence_start == 0:
                        sil_tags.append((0, pos_r))
                        clip_start = pos_r
                    else:
                        sil_tags.append((min((rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start), pos), max(pos_r, pos)))
                        clip_start = max(pos_r, pos)
                else:
                    pos_r = (rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept)
                    sil_tags.append((0, pos_r) if silence_start == 0 else ((rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start), pos_r))
                    clip_start = pos_r

                silence_start = None

            total_frames = rms_list.shape[0]
            if (silence_start is not None and total_frames - silence_start >= self.min_interval): sil_tags.append((rms_list[silence_start : min(total_frames, silence_start + self.max_sil_kept) + 1].argmin() + silence_start, total_frames + 1))

            if not sil_tags: return [(waveform, 0, samples.shape[-1])]
            else:
                chunks = []
                if sil_tags[0][0] > 0: chunks.append((self._apply_slice(waveform, 0, sil_tags[0][0]), 0, sil_tags[0][0] * self.hop_size))

                for i in range(len(sil_tags) - 1):
                    chunks.append((self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]), sil_tags[i][1] * self.hop_size, sil_tags[i + 1][0] * self.hop_size))

                if sil_tags[-1][1] < total_frames: chunks.append((self._apply_slice(waveform, sil_tags[-1][1], total_frames), sil_tags[-1][1] * self.hop_size, samples.shape[-1]))
                return chunks

    slicer = Slicer2(sr=sr, threshold=db_thresh, min_interval=min_interval)
    return slicer.slice2(audio)

def restore(segments, total_len, dtype=np.float32):
    out = []
    last_end = 0

    for start, end, processed_seg in segments:
        if start > last_end: out.append(np.zeros(start - last_end, dtype=dtype))

        out.append(processed_seg)
        last_end = end

    if last_end < total_len: out.append(np.zeros(total_len - last_end, dtype=dtype))
    return np.concatenate(out, axis=-1)