Spaces:
Running
Running
File size: 12,636 Bytes
96134ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
def length_to_mask(length, max_len=None, dtype=None, device=None):
assert len(length.shape) == 1
if max_len is None: max_len = length.max().long().item()
mask = torch.arange(max_len, device=length.device, dtype=length.dtype).expand(len(length), max_len) < length.unsqueeze(1)
if dtype is None: dtype = length.dtype
if device is None: device = length.device
return torch.as_tensor(mask, dtype=dtype, device=device)
def get_padding_elem(L_in, stride, kernel_size, dilation):
if stride > 1: padding = [math.floor(kernel_size / 2), math.floor(kernel_size / 2)]
else:
L_out = (math.floor((L_in - dilation * (kernel_size - 1) - 1) / stride) + 1)
padding = [math.floor((L_in - L_out) / 2), math.floor((L_in - L_out) / 2)]
return padding
class _BatchNorm1d(nn.Module):
def __init__(self, input_shape=None, input_size=None, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True, combine_batch_time=False, skip_transpose=False):
super().__init__()
self.combine_batch_time = combine_batch_time
self.skip_transpose = skip_transpose
if input_size is None and skip_transpose: input_size = input_shape[1]
elif input_size is None: input_size = input_shape[-1]
self.norm = nn.BatchNorm1d(input_size, eps=eps, momentum=momentum, affine=affine, track_running_stats=track_running_stats)
def forward(self, x):
shape_or = x.shape
if self.combine_batch_time:x = x.reshape(shape_or[0] * shape_or[1], shape_or[2]) if x.ndim == 3 else x.reshape(shape_or[0] * shape_or[1], shape_or[3], shape_or[2])
elif not self.skip_transpose: x = x.transpose(-1, 1)
x_n = self.norm(x)
if self.combine_batch_time: x_n = x_n.reshape(shape_or)
elif not self.skip_transpose: x_n = x_n.transpose(1, -1)
return x_n
class _Conv1d(nn.Module):
def __init__(self, out_channels, kernel_size, input_shape=None, in_channels=None, stride=1, dilation=1, padding="same", groups=1, bias=True, padding_mode="reflect", skip_transpose=False, weight_norm=False, conv_init=None, default_padding=0):
super().__init__()
self.kernel_size = kernel_size
self.stride = stride
self.dilation = dilation
self.padding = padding
self.padding_mode = padding_mode
self.unsqueeze = False
self.skip_transpose = skip_transpose
if input_shape is None and in_channels is None: raise ValueError
if in_channels is None: in_channels = self._check_input_shape(input_shape)
self.in_channels = in_channels
self.conv = nn.Conv1d(in_channels, out_channels, self.kernel_size, stride=self.stride, dilation=self.dilation, padding=default_padding, groups=groups, bias=bias)
if conv_init == "kaiming": nn.init.kaiming_normal_(self.conv.weight)
elif conv_init == "zero": nn.init.zeros_(self.conv.weight)
elif conv_init == "normal": nn.init.normal_(self.conv.weight, std=1e-6)
if weight_norm: self.conv = nn.utils.weight_norm(self.conv)
def forward(self, x):
if not self.skip_transpose: x = x.transpose(1, -1)
if self.unsqueeze: x = x.unsqueeze(1)
if self.padding == "same": x = self._manage_padding(x, self.kernel_size, self.dilation, self.stride)
elif self.padding == "causal": x = F.pad(x, ((self.kernel_size - 1) * self.dilation, 0))
elif self.padding == "valid": pass
else: raise ValueError
wx = self.conv(x)
if self.unsqueeze: wx = wx.squeeze(1)
if not self.skip_transpose: wx = wx.transpose(1, -1)
return wx
def _manage_padding(self, x, kernel_size, dilation, stride):
return F.pad(x, get_padding_elem(self.in_channels, stride, kernel_size, dilation), mode=self.padding_mode)
def _check_input_shape(self, shape):
if len(shape) == 2:
self.unsqueeze = True
in_channels = 1
elif self.skip_transpose: in_channels = shape[1]
elif len(shape) == 3: in_channels = shape[2]
else: raise ValueError
if not self.padding == "valid" and self.kernel_size % 2 == 0: raise ValueError
return in_channels
def remove_weight_norm(self):
self.conv = nn.utils.remove_weight_norm(self.conv)
class Linear(torch.nn.Module):
def __init__(self, n_neurons, input_shape=None, input_size=None, bias=True, max_norm=None, combine_dims=False):
super().__init__()
self.max_norm = max_norm
self.combine_dims = combine_dims
if input_shape is None and input_size is None: raise ValueError
if input_size is None:
input_size = input_shape[-1]
if len(input_shape) == 4 and self.combine_dims: input_size = input_shape[2] * input_shape[3]
self.w = nn.Linear(input_size, n_neurons, bias=bias)
def forward(self, x):
if x.ndim == 4 and self.combine_dims: x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3])
if self.max_norm is not None: self.w.weight.data = torch.renorm(self.w.weight.data, p=2, dim=0, maxnorm=self.max_norm)
return self.w(x)
class Conv1d(_Conv1d):
def __init__(self, *args, **kwargs):
super().__init__(skip_transpose=True, *args, **kwargs)
class BatchNorm1d(_BatchNorm1d):
def __init__(self, *args, **kwargs):
super().__init__(skip_transpose=True, *args, **kwargs)
class TDNNBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, dilation, activation=nn.ReLU, groups=1, dropout=0.0):
super().__init__()
self.conv = Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, dilation=dilation, groups=groups)
self.activation = activation()
self.norm = BatchNorm1d(input_size=out_channels)
self.dropout = nn.Dropout1d(p=dropout)
def forward(self, x):
return self.dropout(self.norm(self.activation(self.conv(x))))
class Res2NetBlock(torch.nn.Module):
def __init__(self, in_channels, out_channels, scale=8, kernel_size=3, dilation=1, dropout=0.0):
super().__init__()
assert in_channels % scale == 0
assert out_channels % scale == 0
in_channel = in_channels // scale
hidden_channel = out_channels // scale
self.blocks = nn.ModuleList([TDNNBlock(in_channel, hidden_channel, kernel_size=kernel_size, dilation=dilation, dropout=dropout) for _ in range(scale - 1)])
self.scale = scale
def forward(self, x):
y = []
for i, x_i in enumerate(torch.chunk(x, self.scale, dim=1)):
if i == 0: y_i = x_i
elif i == 1: y_i = self.blocks[i - 1](x_i)
else: y_i = self.blocks[i - 1](x_i + y_i)
y.append(y_i)
return torch.cat(y, dim=1)
class SEBlock(nn.Module):
def __init__(self, in_channels, se_channels, out_channels):
super().__init__()
self.conv1 = Conv1d(in_channels=in_channels, out_channels=se_channels, kernel_size=1)
self.relu = torch.nn.ReLU(inplace=True)
self.conv2 = Conv1d(in_channels=se_channels, out_channels=out_channels, kernel_size=1)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x, lengths=None):
L = x.shape[-1]
if lengths is not None:
mask = length_to_mask(lengths * L, max_len=L, device=x.device).unsqueeze(1)
s = (x * mask).sum(dim=2, keepdim=True) / mask.sum(dim=2, keepdim=True)
else: s = x.mean(dim=2, keepdim=True)
return self.sigmoid(self.conv2(self.relu(self.conv1(s)))) * x
class AttentiveStatisticsPooling(nn.Module):
def __init__(self, channels, attention_channels=128, global_context=True):
super().__init__()
self.eps = 1e-12
self.global_context = global_context
self.tdnn = TDNNBlock(channels * 3, attention_channels, 1, 1) if global_context else TDNNBlock(channels, attention_channels, 1, 1)
self.tanh = nn.Tanh()
self.conv = Conv1d(in_channels=attention_channels, out_channels=channels, kernel_size=1)
def forward(self, x, lengths=None):
L = x.shape[-1]
def _compute_statistics(x, m, dim=2, eps=self.eps):
mean = (m * x).sum(dim)
return mean, torch.sqrt((m * (x - mean.unsqueeze(dim)).pow(2)).sum(dim).clamp(eps))
if lengths is None: lengths = torch.ones(x.shape[0], device=x.device)
mask = length_to_mask(lengths * L, max_len=L, device=x.device).unsqueeze(1)
if self.global_context:
mean, std = _compute_statistics(x, mask / mask.sum(dim=2, keepdim=True).float())
attn = torch.cat([x, mean.unsqueeze(2).repeat(1, 1, L), std.unsqueeze(2).repeat(1, 1, L)], dim=1)
else: attn = x
mean, std = _compute_statistics(x, F.softmax(self.conv(self.tanh(self.tdnn(attn))).masked_fill(mask == 0, float("-inf")), dim=2))
return torch.cat((mean, std), dim=1).unsqueeze(2)
class SERes2NetBlock(nn.Module):
def __init__(self, in_channels, out_channels, res2net_scale=8, se_channels=128, kernel_size=1, dilation=1, activation=torch.nn.ReLU, groups=1, dropout=0.0):
super().__init__()
self.out_channels = out_channels
self.tdnn1 = TDNNBlock(in_channels, out_channels, kernel_size=1, dilation=1, activation=activation, groups=groups, dropout=dropout)
self.res2net_block = Res2NetBlock(out_channels, out_channels, res2net_scale, kernel_size, dilation)
self.tdnn2 = TDNNBlock(out_channels, out_channels, kernel_size=1, dilation=1, activation=activation, groups=groups, dropout=dropout)
self.se_block = SEBlock(out_channels, se_channels, out_channels)
self.shortcut = None
if in_channels != out_channels: self.shortcut = Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=1)
def forward(self, x, lengths=None):
residual = x
if self.shortcut: residual = self.shortcut(x)
return self.se_block(self.tdnn2(self.res2net_block(self.tdnn1(x))), lengths) + residual
class ECAPA_TDNN(torch.nn.Module):
def __init__(self, input_size, device="cpu", lin_neurons=192, activation=torch.nn.ReLU, channels=[512, 512, 512, 512, 1536], kernel_sizes=[5, 3, 3, 3, 1], dilations=[1, 2, 3, 4, 1], attention_channels=128, res2net_scale=8, se_channels=128, global_context=True, groups=[1, 1, 1, 1, 1], dropout=0.0):
super().__init__()
assert len(channels) == len(kernel_sizes)
assert len(channels) == len(dilations)
self.channels = channels
self.blocks = nn.ModuleList()
self.blocks.append(TDNNBlock(input_size, channels[0], kernel_sizes[0], dilations[0], activation, groups[0], dropout))
for i in range(1, len(channels) - 1):
self.blocks.append(SERes2NetBlock(channels[i - 1], channels[i], res2net_scale=res2net_scale, se_channels=se_channels, kernel_size=kernel_sizes[i], dilation=dilations[i], activation=activation, groups=groups[i], dropout=dropout))
self.mfa = TDNNBlock(channels[-2] * (len(channels) - 2), channels[-1], kernel_sizes[-1], dilations[-1], activation, groups=groups[-1], dropout=dropout)
self.asp = AttentiveStatisticsPooling(channels[-1], attention_channels=attention_channels, global_context=global_context)
self.asp_bn = BatchNorm1d(input_size=channels[-1] * 2)
self.fc = Conv1d(in_channels=channels[-1] * 2, out_channels=lin_neurons, kernel_size=1)
def forward(self, x, lengths=None):
x = x.transpose(1, 2)
xl = []
for layer in self.blocks:
try:
x = layer(x, lengths=lengths)
except TypeError:
x = layer(x)
xl.append(x)
return self.fc(self.asp_bn(self.asp(self.mfa(torch.cat(xl[1:], dim=1)), lengths=lengths))).transpose(1, 2)
class Classifier(torch.nn.Module):
def __init__(self, input_size, device="cpu", lin_blocks=0, lin_neurons=192, out_neurons=1211):
super().__init__()
self.blocks = nn.ModuleList()
for _ in range(lin_blocks):
self.blocks.extend([_BatchNorm1d(input_size=input_size), Linear(input_size=input_size, n_neurons=lin_neurons)])
input_size = lin_neurons
self.weight = nn.Parameter(torch.FloatTensor(out_neurons, input_size, device=device))
nn.init.xavier_uniform_(self.weight)
def forward(self, x):
for layer in self.blocks:
x = layer(x)
return F.linear(F.normalize(x.squeeze(1)), F.normalize(self.weight)).unsqueeze(1) |