File size: 6,135 Bytes
96134ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os
import math
import random
import torchaudio

from io import IOBase
from torch.nn.functional import pad

def get_torchaudio_info(file, backend = None):
    if not backend:
        backends = (torchaudio.list_audio_backends())
        backend = "soundfile" if "soundfile" in backends else backends[0]

    info = torchaudio.info(file["audio"], backend=backend)
    if isinstance(file["audio"], IOBase): file["audio"].seek(0)

    return info

class Audio:
    @staticmethod
    def power_normalize(waveform):
        return waveform / (waveform.square().mean(dim=-1, keepdim=True).sqrt() + 1e-8)

    @staticmethod
    def validate_file(file):
        if isinstance(file, (str, os.PathLike)): file = {"audio": str(file), "uri": os.path.splitext(os.path.basename(file))[0]}
        elif isinstance(file, IOBase): return {"audio": file, "uri": "stream"}
        else: raise ValueError

        if "waveform" in file:
            waveform = file["waveform"]
            if len(waveform.shape) != 2 or waveform.shape[0] > waveform.shape[1]: raise ValueError

            sample_rate: int = file.get("sample_rate", None)
            if sample_rate is None: raise ValueError

            file.setdefault("uri", "waveform")

        elif "audio" in file:
            if isinstance(file["audio"], IOBase): return file

            path = os.path.abspath(file["audio"])
            file.setdefault("uri", os.path.splitext(os.path.basename(path))[0])

        else: raise ValueError

        return file

    def __init__(self, sample_rate: int = None, mono=None, backend: str = None):
        super().__init__()
        self.sample_rate = sample_rate
        self.mono = mono

        if not backend:
            backends = (torchaudio.list_audio_backends())  
            backend = "soundfile" if "soundfile" in backends else backends[0]

        self.backend = backend

    def downmix_and_resample(self, waveform, sample_rate):
        num_channels = waveform.shape[0]

        if num_channels > 1:
            if self.mono == "random":
                channel = random.randint(0, num_channels - 1)
                waveform = waveform[channel : channel + 1]
            elif self.mono == "downmix": waveform = waveform.mean(dim=0, keepdim=True)

        if (self.sample_rate is not None) and (self.sample_rate != sample_rate):
            waveform = torchaudio.functional.resample(waveform, sample_rate, self.sample_rate)
            sample_rate = self.sample_rate

        return waveform, sample_rate

    def get_duration(self, file):
        file = self.validate_file(file)

        if "waveform" in file:
            frames = len(file["waveform"].T)
            sample_rate = file["sample_rate"]
        else:
            info = file["torchaudio.info"] if "torchaudio.info" in file else get_torchaudio_info(file, backend=self.backend)
            frames = info.num_frames
            sample_rate = info.sample_rate

        return frames / sample_rate

    def get_num_samples(self, duration, sample_rate = None):
        sample_rate = sample_rate or self.sample_rate
        if sample_rate is None: raise ValueError

        return math.floor(duration * sample_rate)

    def __call__(self, file):
        file = self.validate_file(file)

        if "waveform" in file:
            waveform = file["waveform"]
            sample_rate = file["sample_rate"]
        elif "audio" in file:
            waveform, sample_rate = torchaudio.load(file["audio"], backend=self.backend)
            if isinstance(file["audio"], IOBase): file["audio"].seek(0)

        channel = file.get("channel", None)
        if channel is not None: waveform = waveform[channel : channel + 1]

        return self.downmix_and_resample(waveform, sample_rate)

    def crop(self, file, segment, duration = None, mode="raise"):
        file = self.validate_file(file)

        if "waveform" in file:
            waveform = file["waveform"]
            frames = waveform.shape[1]
            sample_rate = file["sample_rate"]
        elif "torchaudio.info" in file:
            info = file["torchaudio.info"]
            frames = info.num_frames
            sample_rate = info.sample_rate
        else:
            info = get_torchaudio_info(file, backend=self.backend)
            frames = info.num_frames
            sample_rate = info.sample_rate

        channel = file.get("channel", None)
        start_frame = math.floor(segment.start * sample_rate)

        if duration:
            num_frames = math.floor(duration * sample_rate)
            end_frame = start_frame + num_frames
        else:
            end_frame = math.floor(segment.end * sample_rate)
            num_frames = end_frame - start_frame

        if mode == "raise":
            if num_frames > frames: raise ValueError

            if end_frame > frames + math.ceil(0.001 * sample_rate): raise ValueError
            else:
                end_frame = min(end_frame, frames)
                start_frame = end_frame - num_frames

            if start_frame < 0: raise ValueError
        elif mode == "pad":
            pad_start = -min(0, start_frame)
            pad_end = max(end_frame, frames) - frames

            start_frame = max(0, start_frame)
            end_frame = min(end_frame, frames)

            num_frames = end_frame - start_frame

        if "waveform" in file: data = file["waveform"][:, start_frame:end_frame]
        else:
            try:
                data, _ = torchaudio.load(file["audio"], frame_offset=start_frame, num_frames=num_frames, backend=self.backend)
                if isinstance(file["audio"], IOBase): file["audio"].seek(0)
            except RuntimeError:
                if isinstance(file["audio"], IOBase): raise RuntimeError

                waveform, sample_rate = self.__call__(file)
                data = waveform[:, start_frame:end_frame]

                file["waveform"] = waveform
                file["sample_rate"] = sample_rate

        if channel is not None: data = data[channel : channel + 1, :]
        if mode == "pad": data = pad(data, (pad_start, pad_end))

        return self.downmix_and_resample(data, sample_rate)