NeoPy commited on
Commit
09b2e44
·
verified ·
1 Parent(s): 3978530

Create models/model.py

Browse files
Files changed (1) hide show
  1. main/app/tabs/models/model.py +465 -0
main/app/tabs/models/model.py ADDED
@@ -0,0 +1,465 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from main.tools import huggingface
2
+ from main.configs.config import Config
3
+ from main.app.based.utils import *
4
+ import gradio as gr
5
+
6
+
7
+ def model_tabs():
8
+ with gr.Tabs():
9
+ with gr.Tab(label=translations["downloads"], visible=configs.get("downloads_tab", True)):
10
+ gr.Markdown(translations["download_markdown"])
11
+ with gr.Row():
12
+ gr.Markdown(translations["download_markdown_2"])
13
+ with gr.Row():
14
+ with gr.Accordion(translations["model_download"], open=True):
15
+ with gr.Row():
16
+ downloadmodel = gr.Radio(label=translations["model_download_select"], choices=[translations["download_url"], translations["download_from_csv"], translations["search_models"], translations["upload"]], interactive=True, value=translations["download_url"])
17
+ with gr.Row():
18
+ gr.Markdown("___")
19
+ with gr.Column():
20
+ with gr.Row():
21
+ url_input = gr.Textbox(label=translations["model_url"], value="", placeholder="https://...", scale=6)
22
+ download_model_name = gr.Textbox(label=translations["modelname"], value="", placeholder=translations["modelname"], scale=2)
23
+ url_download = gr.Button(value=translations["downloads"], scale=2)
24
+ with gr.Column():
25
+ model_browser = gr.Dropdown(choices=models.keys(), label=translations["model_warehouse"], scale=8, allow_custom_value=True, visible=False)
26
+ download_from_browser = gr.Button(value=translations["get_model"], scale=2, variant="primary", visible=False)
27
+ with gr.Column():
28
+ search_name = gr.Textbox(label=translations["name_to_search"], placeholder=translations["modelname"], interactive=True, scale=8, visible=False)
29
+ search = gr.Button(translations["search_2"], scale=2, visible=False)
30
+ search_dropdown = gr.Dropdown(label=translations["select_download_model"], value="", choices=[], allow_custom_value=True, interactive=False, visible=False)
31
+ download = gr.Button(translations["downloads"], variant="primary", visible=False)
32
+ with gr.Column():
33
+ model_upload = gr.File(label=translations["drop_model"], file_types=[".pth", ".onnx", ".index", ".zip"], visible=False)
34
+ with gr.Row():
35
+ with gr.Accordion(translations["download_pretrained_2"], open=False):
36
+ with gr.Row():
37
+ pretrain_download_choices = gr.Radio(label=translations["model_download_select"], choices=[translations["download_url"], translations["list_model"], translations["upload"]], value=translations["download_url"], interactive=True)
38
+ with gr.Row():
39
+ gr.Markdown("___")
40
+ with gr.Column():
41
+ with gr.Row():
42
+ pretrainD = gr.Textbox(label=translations["pretrained_url"].format(dg="D"), value="", info=translations["only_huggingface"], placeholder="https://...", interactive=True, scale=4)
43
+ pretrainG = gr.Textbox(label=translations["pretrained_url"].format(dg="G"), value="", info=translations["only_huggingface"], placeholder="https://...", interactive=True, scale=4)
44
+ download_pretrain_button = gr.Button(translations["downloads"], scale=2)
45
+ with gr.Column():
46
+ with gr.Row():
47
+ pretrain_choices = gr.Dropdown(label=translations["select_pretrain"], info=translations["select_pretrain_info"], choices=list(fetch_pretrained_data().keys()), value="Titan_Medium", allow_custom_value=True, interactive=True, scale=6, visible=False)
48
+ sample_rate_pretrain = gr.Dropdown(label=translations["pretrain_sr"], info=translations["pretrain_sr"], choices=["48k", "40k", "32k"], value="48k", interactive=True, visible=False)
49
+ download_pretrain_choices_button = gr.Button(translations["downloads"], scale=2, variant="primary", visible=False)
50
+ with gr.Row():
51
+ pretrain_upload_g = gr.File(label=translations["drop_pretrain"].format(dg="G"), file_types=[".pth"], visible=False)
52
+ pretrain_upload_d = gr.File(label=translations["drop_pretrain"].format(dg="D"), file_types=[".pth"], visible=False)
53
+ with gr.Row():
54
+ url_download.click(
55
+ fn=download_model,
56
+ inputs=[
57
+ url_input,
58
+ download_model_name
59
+ ],
60
+ outputs=[url_input],
61
+ api_name="download_model"
62
+ )
63
+ download_from_browser.click(
64
+ fn=lambda model: download_model(models[model], model),
65
+ inputs=[model_browser],
66
+ outputs=[model_browser],
67
+ api_name="download_browser"
68
+ )
69
+ with gr.Row():
70
+ downloadmodel.change(fn=change_download_choices, inputs=[downloadmodel], outputs=[url_input, download_model_name, url_download, model_browser, download_from_browser, search_name, search, search_dropdown, download, model_upload])
71
+ search.click(fn=search_models, inputs=[search_name], outputs=[search_dropdown, download])
72
+ model_upload.upload(fn=save_drop_model, inputs=[model_upload], outputs=[model_upload])
73
+ download.click(
74
+ fn=lambda model: download_model(model_options[model], model),
75
+ inputs=[search_dropdown],
76
+ outputs=[search_dropdown],
77
+ api_name="search_models"
78
+ )
79
+ with gr.Row():
80
+ pretrain_download_choices.change(fn=change_download_pretrained_choices, inputs=[pretrain_download_choices], outputs=[pretrainD, pretrainG, download_pretrain_button, pretrain_choices, sample_rate_pretrain, download_pretrain_choices_button, pretrain_upload_d, pretrain_upload_g])
81
+ pretrain_choices.change(fn=update_sample_rate_dropdown, inputs=[pretrain_choices], outputs=[sample_rate_pretrain])
82
+ with gr.Row():
83
+ download_pretrain_button.click(
84
+ fn=download_pretrained_model,
85
+ inputs=[
86
+ pretrain_download_choices,
87
+ pretrainD,
88
+ pretrainG
89
+ ],
90
+ outputs=[pretrainD],
91
+ api_name="download_pretrain_link"
92
+ )
93
+ download_pretrain_choices_button.click(
94
+ fn=download_pretrained_model,
95
+ inputs=[
96
+ pretrain_download_choices,
97
+ pretrain_choices,
98
+ sample_rate_pretrain
99
+ ],
100
+ outputs=[pretrain_choices],
101
+ api_name="download_pretrain_choices"
102
+ )
103
+ pretrain_upload_g.upload(
104
+ fn=lambda pretrain_upload_g: shutil.move(pretrain_upload_g.name, os.path.join("assets", "models", "pretrained_custom")),
105
+ inputs=[pretrain_upload_g],
106
+ outputs=[],
107
+ api_name="upload_pretrain_g"
108
+ )
109
+ pretrain_upload_d.upload(
110
+ fn=lambda pretrain_upload_d: shutil.move(pretrain_upload_d.name, os.path.join("assets", "models", "pretrained_custom")),
111
+ inputs=[pretrain_upload_d],
112
+ outputs=[],
113
+ api_name="upload_pretrain_d"
114
+ )
115
+
116
+ with gr.Tab(label=translations["createdataset"], visible=configs.get("create_dataset_tab", True)):
117
+ gr.Markdown(translations["create_dataset_markdown"])
118
+ with gr.Row():
119
+ gr.Markdown(translations["create_dataset_markdown_2"])
120
+ with gr.Row():
121
+ dataset_url = gr.Textbox(label=translations["url_audio"], info=translations["create_dataset_url"], value="", placeholder="https://www.youtube.com/...", interactive=True)
122
+ output_dataset = gr.Textbox(label=translations["output_data"], info=translations["output_data_info"], value="dataset", placeholder="dataset", interactive=True)
123
+ with gr.Row():
124
+ with gr.Column():
125
+ with gr.Group():
126
+ with gr.Row():
127
+ separator_reverb = gr.Checkbox(label=translations["dereveb_audio"], value=False, interactive=True)
128
+ denoise_mdx = gr.Checkbox(label=translations["denoise"], value=False, interactive=True)
129
+ with gr.Row():
130
+ kim_vocal_version = gr.Radio(label=translations["model_ver"], info=translations["model_ver_info"], choices=["Version-1", "Version-2"], value="Version-2", interactive=True)
131
+ kim_vocal_overlap = gr.Radio(label=translations["overlap"], info=translations["overlap_info"], choices=["0.25", "0.5", "0.75", "0.99"], value="0.25", interactive=True)
132
+ with gr.Row():
133
+ kim_vocal_hop_length = gr.Slider(label="Hop length", info=translations["hop_length_info"], minimum=1, maximum=8192, value=1024, step=1, interactive=True)
134
+ kim_vocal_batch_size = gr.Slider(label=translations["batch_size"], info=translations["mdx_batch_size_info"], minimum=1, maximum=64, value=1, step=1, interactive=True)
135
+ with gr.Row():
136
+ kim_vocal_segments_size = gr.Slider(label=translations["segments_size"], info=translations["segments_size_info"], minimum=32, maximum=3072, value=256, step=32, interactive=True)
137
+ with gr.Row():
138
+ sample_rate0 = gr.Slider(minimum=8000, maximum=96000, step=1, value=44100, label=translations["sr"], info=translations["sr_info"], interactive=True)
139
+ with gr.Column():
140
+ create_button = gr.Button(translations["createdataset"], variant="primary", scale=2, min_width=4000)
141
+ with gr.Group():
142
+ with gr.Row():
143
+ clean_audio = gr.Checkbox(label=translations["clear_audio"], value=False, interactive=True)
144
+ skip = gr.Checkbox(label=translations["skip"], value=False, interactive=True)
145
+ with gr.Row():
146
+ dataset_clean_strength = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.5, label=translations["clean_strength"], info=translations["clean_strength_info"], interactive=True, visible=clean_audio.value)
147
+ with gr.Row():
148
+ skip_start = gr.Textbox(label=translations["skip_start"], info=translations["skip_start_info"], value="", placeholder="0,...", interactive=True, visible=skip.value)
149
+ skip_end = gr.Textbox(label=translations["skip_end"], info=translations["skip_end_info"], value="", placeholder="0,...", interactive=True, visible=skip.value)
150
+ create_dataset_info = gr.Textbox(label=translations["create_dataset_info"], value="", interactive=False)
151
+ with gr.Row():
152
+ clean_audio.change(fn=visible, inputs=[clean_audio], outputs=[dataset_clean_strength])
153
+ skip.change(fn=lambda a: [valueEmpty_visible1(a)]*2, inputs=[skip], outputs=[skip_start, skip_end])
154
+ with gr.Row():
155
+ create_button.click(
156
+ fn=create_dataset,
157
+ inputs=[
158
+ dataset_url,
159
+ output_dataset,
160
+ clean_audio,
161
+ dataset_clean_strength,
162
+ separator_reverb,
163
+ kim_vocal_version,
164
+ kim_vocal_overlap,
165
+ kim_vocal_segments_size,
166
+ denoise_mdx,
167
+ skip,
168
+ skip_start,
169
+ skip_end,
170
+ kim_vocal_hop_length,
171
+ kim_vocal_batch_size,
172
+ sample_rate0
173
+ ],
174
+ outputs=[create_dataset_info],
175
+ api_name="create_dataset"
176
+ )
177
+
178
+ with gr.Tab(label=translations["training_model"], visible=configs.get("training_tab", True)):
179
+ gr.Markdown(f"## {translations['training_model']}")
180
+ with gr.Row():
181
+ gr.Markdown(translations["training_markdown"])
182
+ with gr.Row():
183
+ with gr.Column():
184
+ with gr.Row():
185
+ with gr.Column():
186
+ training_name = gr.Textbox(label=translations["modelname"], info=translations["training_model_name"], value="", placeholder=translations["modelname"], interactive=True)
187
+ training_sr = gr.Radio(label=translations["sample_rate"], info=translations["sample_rate_info"], choices=["32k", "40k", "48k"], value="48k", interactive=True)
188
+ training_ver = gr.Radio(label=translations["training_version"], info=translations["training_version_info"], choices=["v1", "v2"], value="v2", interactive=True)
189
+ with gr.Row():
190
+ clean_dataset = gr.Checkbox(label=translations["clear_dataset"], value=False, interactive=True)
191
+ preprocess_cut = gr.Checkbox(label=translations["split_audio"], value=True, interactive=True)
192
+ process_effects = gr.Checkbox(label=translations["preprocess_effect"], value=False, interactive=True)
193
+ checkpointing1 = gr.Checkbox(label=translations["memory_efficient_training"], value=False, interactive=True)
194
+ training_f0 = gr.Checkbox(label=translations["training_pitch"], value=True, interactive=True)
195
+ upload = gr.Checkbox(label=translations["upload_dataset"], value=False, interactive=True)
196
+ with gr.Row():
197
+ clean_dataset_strength = gr.Slider(label=translations["clean_strength"], info=translations["clean_strength_info"], minimum=0, maximum=1, value=0.7, step=0.1, interactive=True, visible=clean_dataset.value)
198
+ with gr.Column():
199
+ preprocess_button = gr.Button(translations["preprocess_button"], scale=2)
200
+ upload_dataset = gr.Files(label=translations["drop_audio"], file_types=[".wav", ".mp3", ".flac", ".ogg", ".opus", ".m4a", ".mp4", ".aac", ".alac", ".wma", ".aiff", ".webm", ".ac3"], visible=upload.value)
201
+ preprocess_info = gr.Textbox(label=translations["preprocess_info"], value="", interactive=False)
202
+ with gr.Column():
203
+ with gr.Row():
204
+ with gr.Column():
205
+ with gr.Accordion(label=translations["f0_method"], open=False):
206
+ with gr.Group():
207
+ with gr.Row():
208
+ onnx_f0_mode2 = gr.Checkbox(label=translations["f0_onnx_mode"], info=translations["f0_onnx_mode_info"], value=False, interactive=True)
209
+ unlock_full_method4 = gr.Checkbox(label=translations["f0_unlock"], info=translations["f0_unlock_info"], value=False, interactive=True)
210
+ extract_method = gr.Radio(label=translations["f0_method"], info=translations["f0_method_info"], choices=method_f0, value="rmvpe", interactive=True)
211
+ extract_hop_length = gr.Slider(label="Hop length", info=translations["hop_length_info"], minimum=1, maximum=512, value=128, step=1, interactive=True, visible=False)
212
+ with gr.Accordion(label=translations["hubert_model"], open=False):
213
+ with gr.Group():
214
+ embed_mode2 = gr.Radio(label=translations["embed_mode"], info=translations["embed_mode_info"], value="fairseq", choices=embedders_mode, interactive=True, visible=True)
215
+ extract_embedders = gr.Radio(label=translations["hubert_model"], info=translations["hubert_info"], choices=embedders_model, value="hubert_base", interactive=True)
216
+ with gr.Row():
217
+ extract_embedders_custom = gr.Textbox(label=translations["modelname"], info=translations["modelname_info"], value="", placeholder="hubert_base", interactive=True, visible=extract_embedders.value == "custom")
218
+ with gr.Column():
219
+ extract_button = gr.Button(translations["extract_button"], scale=2)
220
+ extract_info = gr.Textbox(label=translations["extract_info"], value="", interactive=False)
221
+ with gr.Column():
222
+ with gr.Row():
223
+ with gr.Column():
224
+ total_epochs = gr.Slider(label=translations["total_epoch"], info=translations["total_epoch_info"], minimum=1, maximum=10000, value=300, step=1, interactive=True)
225
+ save_epochs = gr.Slider(label=translations["save_epoch"], info=translations["save_epoch_info"], minimum=1, maximum=10000, value=50, step=1, interactive=True)
226
+ with gr.Column():
227
+ with gr.Row():
228
+ index_button = gr.Button(f"3. {translations['create_index']}", variant="primary", scale=2)
229
+ training_button = gr.Button(f"4. {translations['training_model']}", variant="primary", scale=2)
230
+ with gr.Row():
231
+ with gr.Accordion(label=translations["setting"], open=False):
232
+ with gr.Row():
233
+ index_algorithm = gr.Radio(label=translations["index_algorithm"], info=translations["index_algorithm_info"], choices=["Auto", "Faiss", "KMeans"], value="Auto", interactive=True)
234
+ with gr.Row():
235
+ custom_dataset = gr.Checkbox(label=translations["custom_dataset"], info=translations["custom_dataset_info"], value=False, interactive=True)
236
+ overtraining_detector = gr.Checkbox(label=translations["overtraining_detector"], info=translations["overtraining_detector_info"], value=False, interactive=True)
237
+ clean_up = gr.Checkbox(label=translations["cleanup_training"], info=translations["cleanup_training_info"], value=False, interactive=True)
238
+ cache_in_gpu = gr.Checkbox(label=translations["cache_in_gpu"], info=translations["cache_in_gpu_info"], value=False, interactive=True)
239
+ with gr.Column():
240
+ dataset_path = gr.Textbox(label=translations["dataset_folder"], value="dataset", interactive=True, visible=custom_dataset.value)
241
+ with gr.Column():
242
+ threshold = gr.Slider(minimum=1, maximum=100, value=50, step=1, label=translations["threshold"], interactive=True, visible=overtraining_detector.value)
243
+ with gr.Accordion(translations["setting_cpu_gpu"], open=False):
244
+ with gr.Column():
245
+ gpu_number = gr.Textbox(label=translations["gpu_number"], value=str("-".join(map(str, range(torch.cuda.device_count()))) if torch.cuda.is_available() else "-"), info=translations["gpu_number_info"], interactive=True)
246
+ gpu_info = gr.Textbox(label=translations["gpu_info"], value=get_gpu_info(), info=translations["gpu_info_2"], interactive=False)
247
+ cpu_core = gr.Slider(label=translations["cpu_core"], info=translations["cpu_core_info"], minimum=0, maximum=cpu_count(), value=cpu_count(), step=1, interactive=True)
248
+ train_batch_size = gr.Slider(label=translations["batch_size"], info=translations["batch_size_info"], minimum=1, maximum=64, value=8, step=1, interactive=True)
249
+ with gr.Row():
250
+ save_only_latest = gr.Checkbox(label=translations["save_only_latest"], info=translations["save_only_latest_info"], value=True, interactive=True)
251
+ save_every_weights = gr.Checkbox(label=translations["save_every_weights"], info=translations["save_every_weights_info"], value=True, interactive=True)
252
+ not_use_pretrain = gr.Checkbox(label=translations["not_use_pretrain_2"], info=translations["not_use_pretrain_info"], value=False, interactive=True)
253
+ custom_pretrain = gr.Checkbox(label=translations["custom_pretrain"], info=translations["custom_pretrain_info"], value=False, interactive=True)
254
+ with gr.Row():
255
+ vocoders = gr.Radio(label=translations["vocoder"], info=translations["vocoder_info"], choices=["Default", "MRF-HiFi-GAN", "RefineGAN"], value="Default", interactive=True)
256
+ with gr.Row():
257
+ deterministic = gr.Checkbox(label=translations["deterministic"], info=translations["deterministic_info"], value=False, interactive=True)
258
+ benchmark = gr.Checkbox(label=translations["benchmark"], info=translations["benchmark_info"], value=False, interactive=True)
259
+ with gr.Row():
260
+ model_author = gr.Textbox(label=translations["training_author"], info=translations["training_author_info"], value="", placeholder=translations["training_author"], interactive=True)
261
+ with gr.Row():
262
+ with gr.Column():
263
+ with gr.Accordion(translations["custom_pretrain_info"], open=False, visible=custom_pretrain.value and not not_use_pretrain.value) as pretrain_setting:
264
+ pretrained_D = gr.Dropdown(label=translations["pretrain_file"].format(dg="D"), choices=pretrainedD, value=pretrainedD[0] if len(pretrainedD) > 0 else '', interactive=True, allow_custom_value=True)
265
+ pretrained_G = gr.Dropdown(label=translations["pretrain_file"].format(dg="G"), choices=pretrainedG, value=pretrainedG[0] if len(pretrainedG) > 0 else '', interactive=True, allow_custom_value=True)
266
+ refesh_pretrain = gr.Button(translations["refesh"], scale=2)
267
+ with gr.Row():
268
+ training_info = gr.Textbox(label=translations["train_info"], value="", interactive=False)
269
+ with gr.Row():
270
+ with gr.Column():
271
+ with gr.Accordion(translations["export_model"], open=False):
272
+ with gr.Row():
273
+ model_file= gr.Dropdown(label=translations["model_name"], choices=model_name, value=model_name[0] if len(model_name) >= 1 else "", interactive=True, allow_custom_value=True)
274
+ index_file = gr.Dropdown(label=translations["index_path"], choices=index_path, value=index_path[0] if len(index_path) >= 1 else "", interactive=True, allow_custom_value=True)
275
+ with gr.Row():
276
+ refesh_file = gr.Button(f"1. {translations['refesh']}", scale=2)
277
+ zip_model = gr.Button(translations["zip_model"], variant="primary", scale=2)
278
+ with gr.Row():
279
+ zip_output = gr.File(label=translations["output_zip"], file_types=[".zip"], interactive=False, visible=False)
280
+ with gr.Row():
281
+ vocoders.change(fn=pitch_guidance_lock, inputs=[vocoders], outputs=[training_f0])
282
+ training_f0.change(fn=vocoders_lock, inputs=[training_f0, vocoders], outputs=[vocoders])
283
+ unlock_full_method4.change(fn=unlock_f0, inputs=[unlock_full_method4], outputs=[extract_method])
284
+ with gr.Row():
285
+ refesh_file.click(fn=change_models_choices, inputs=[], outputs=[model_file, index_file])
286
+ zip_model.click(fn=zip_file, inputs=[training_name, model_file, index_file], outputs=[zip_output])
287
+ dataset_path.change(fn=lambda folder: os.makedirs(folder, exist_ok=True), inputs=[dataset_path], outputs=[])
288
+ with gr.Row():
289
+ upload.change(fn=visible, inputs=[upload], outputs=[upload_dataset])
290
+ overtraining_detector.change(fn=visible, inputs=[overtraining_detector], outputs=[threshold])
291
+ clean_dataset.change(fn=visible, inputs=[clean_dataset], outputs=[clean_dataset_strength])
292
+ with gr.Row():
293
+ custom_dataset.change(fn=lambda custom_dataset: [visible(custom_dataset), "dataset"],inputs=[custom_dataset], outputs=[dataset_path, dataset_path])
294
+ training_ver.change(fn=unlock_vocoder, inputs=[training_ver, vocoders], outputs=[vocoders])
295
+ vocoders.change(fn=unlock_ver, inputs=[training_ver, vocoders], outputs=[training_ver])
296
+ upload_dataset.upload(
297
+ fn=lambda files, folder: [shutil.move(f.name, os.path.join(folder, os.path.split(f.name)[1])) for f in files] if folder != "" else gr_warning(translations["dataset_folder1"]),
298
+ inputs=[upload_dataset, dataset_path],
299
+ outputs=[],
300
+ api_name="upload_dataset"
301
+ )
302
+ with gr.Row():
303
+ not_use_pretrain.change(fn=lambda a, b: visible(a and not b), inputs=[custom_pretrain, not_use_pretrain], outputs=[pretrain_setting])
304
+ custom_pretrain.change(fn=lambda a, b: visible(a and not b), inputs=[custom_pretrain, not_use_pretrain], outputs=[pretrain_setting])
305
+ refesh_pretrain.click(fn=change_pretrained_choices, inputs=[], outputs=[pretrained_D, pretrained_G])
306
+ with gr.Row():
307
+ preprocess_button.click(
308
+ fn=preprocess,
309
+ inputs=[
310
+ training_name,
311
+ training_sr,
312
+ cpu_core,
313
+ preprocess_cut,
314
+ process_effects,
315
+ dataset_path,
316
+ clean_dataset,
317
+ clean_dataset_strength
318
+ ],
319
+ outputs=[preprocess_info],
320
+ api_name="preprocess"
321
+ )
322
+ with gr.Row():
323
+ embed_mode2.change(fn=visible_embedders, inputs=[embed_mode2], outputs=[extract_embedders])
324
+ extract_method.change(fn=hoplength_show, inputs=[extract_method], outputs=[extract_hop_length])
325
+ extract_embedders.change(fn=lambda extract_embedders: visible(extract_embedders == "custom"), inputs=[extract_embedders], outputs=[extract_embedders_custom])
326
+ with gr.Row():
327
+ extract_button.click(
328
+ fn=extract,
329
+ inputs=[
330
+ training_name,
331
+ training_ver,
332
+ extract_method,
333
+ training_f0,
334
+ extract_hop_length,
335
+ cpu_core,
336
+ gpu_number,
337
+ training_sr,
338
+ extract_embedders,
339
+ extract_embedders_custom,
340
+ onnx_f0_mode2,
341
+ embed_mode2
342
+ ],
343
+ outputs=[extract_info],
344
+ api_name="extract"
345
+ )
346
+ with gr.Row():
347
+ index_button.click(
348
+ fn=create_index,
349
+ inputs=[
350
+ training_name,
351
+ training_ver,
352
+ index_algorithm
353
+ ],
354
+ outputs=[training_info],
355
+ api_name="create_index"
356
+ )
357
+ with gr.Row():
358
+ training_button.click(
359
+ fn=training,
360
+ inputs=[
361
+ training_name,
362
+ training_ver,
363
+ save_epochs,
364
+ save_only_latest,
365
+ save_every_weights,
366
+ total_epochs,
367
+ training_sr,
368
+ train_batch_size,
369
+ gpu_number,
370
+ training_f0,
371
+ not_use_pretrain,
372
+ custom_pretrain,
373
+ pretrained_G,
374
+ pretrained_D,
375
+ overtraining_detector,
376
+ threshold,
377
+ clean_up,
378
+ cache_in_gpu,
379
+ model_author,
380
+ vocoders,
381
+ checkpointing1,
382
+ deterministic,
383
+ benchmark
384
+ ],
385
+ outputs=[training_info],
386
+ api_name="training_model"
387
+ )
388
+
389
+ with gr.Tab(label=translations["fushion"], visible=configs.get("fushion_tab", True)):
390
+ gr.Markdown(translations["fushion_markdown"])
391
+ with gr.Row():
392
+ gr.Markdown(translations["fushion_markdown_2"])
393
+ with gr.Row():
394
+ name_to_save = gr.Textbox(label=translations["modelname"], placeholder="Model.pth", value="", max_lines=1, interactive=True)
395
+ with gr.Row():
396
+ fushion_button = gr.Button(translations["fushion"], variant="primary", scale=4)
397
+ with gr.Column():
398
+ with gr.Row():
399
+ model_a = gr.File(label=f"{translations['model_name']} 1", file_types=[".pth", ".onnx"])
400
+ model_b = gr.File(label=f"{translations['model_name']} 2", file_types=[".pth", ".onnx"])
401
+ with gr.Row():
402
+ model_path_a = gr.Textbox(label=f"{translations['model_path']} 1", value="", placeholder="assets/weights/Model_1.pth")
403
+ model_path_b = gr.Textbox(label=f"{translations['model_path']} 2", value="", placeholder="assets/weights/Model_2.pth")
404
+ with gr.Row():
405
+ ratio = gr.Slider(minimum=0, maximum=1, label=translations["model_ratio"], info=translations["model_ratio_info"], value=0.5, interactive=True)
406
+ with gr.Row():
407
+ output_model = gr.File(label=translations["output_model_path"], file_types=[".pth", ".onnx"], interactive=False, visible=False)
408
+ with gr.Row():
409
+ model_a.upload(fn=lambda model: shutil.move(model.name, os.path.join("assets", "weights")), inputs=[model_a], outputs=[model_path_a])
410
+ model_b.upload(fn=lambda model: shutil.move(model.name, os.path.join("assets", "weights")), inputs=[model_b], outputs=[model_path_b])
411
+ with gr.Row():
412
+ fushion_button.click(
413
+ fn=fushion_model,
414
+ inputs=[
415
+ name_to_save,
416
+ model_path_a,
417
+ model_path_b,
418
+ ratio
419
+ ],
420
+ outputs=[name_to_save, output_model],
421
+ api_name="fushion_model"
422
+ )
423
+ fushion_button.click(fn=lambda: visible(True), inputs=[], outputs=[output_model])
424
+
425
+ with gr.Tab(label=translations["read_model"], visible=configs.get("read_tab", True)):
426
+ gr.Markdown(translations["read_model_markdown"])
427
+ with gr.Row():
428
+ gr.Markdown(translations["read_model_markdown_2"])
429
+ with gr.Row():
430
+ model = gr.File(label=translations["drop_model"], file_types=[".pth", ".onnx"])
431
+ with gr.Row():
432
+ read_button = gr.Button(translations["readmodel"], variant="primary", scale=2)
433
+ with gr.Column():
434
+ model_path = gr.Textbox(label=translations["model_path"], value="", placeholder="assets/weights/Model.pth", info=translations["model_path_info"], interactive=True)
435
+ output_info = gr.Textbox(label=translations["modelinfo"], value="", interactive=False, scale=6)
436
+ with gr.Row():
437
+ model.upload(fn=lambda model: shutil.move(model.name, os.path.join("assets", "weights")), inputs=[model], outputs=[model_path])
438
+ read_button.click(
439
+ fn=model_info,
440
+ inputs=[model_path],
441
+ outputs=[output_info],
442
+ api_name="read_model"
443
+ )
444
+
445
+ with gr.Tab(label=translations["convert_model"], visible=configs.get("onnx_tab", True)):
446
+ gr.Markdown(translations["pytorch2onnx"])
447
+ with gr.Row():
448
+ gr.Markdown(translations["pytorch2onnx_markdown"])
449
+ with gr.Row():
450
+ model_pth_upload = gr.File(label=translations["drop_model"], file_types=[".pth"])
451
+ with gr.Row():
452
+ convert_onnx = gr.Button(translations["convert_model"], variant="primary", scale=2)
453
+ with gr.Row():
454
+ model_pth_path = gr.Textbox(label=translations["model_path"], value="", placeholder="assets/weights/Model.pth", info=translations["model_path_info"], interactive=True)
455
+ with gr.Row():
456
+ output_model2 = gr.File(label=translations["output_model_path"], file_types=[".pth", ".onnx"], interactive=False, visible=False)
457
+ with gr.Row():
458
+ model_pth_upload.upload(fn=lambda model_pth_upload: shutil.move(model_pth_upload.name, os.path.join("assets", "weights")), inputs=[model_pth_upload], outputs=[model_pth_path])
459
+ convert_onnx.click(
460
+ fn=onnx_export,
461
+ inputs=[model_pth_path],
462
+ outputs=[output_model2, output_info],
463
+ api_name="model_onnx_export"
464
+ )
465
+ convert_onnx.click(fn=lambda: visible(True), inputs=[], outputs=[output_model2])