diff --git "a/main/app/app.py" "b/main/app/app.py" new file mode 100644--- /dev/null +++ "b/main/app/app.py" @@ -0,0 +1,1563 @@ +import os +import re +import ssl +import sys +import json +import torch +import codecs +import shutil +import asyncio +import librosa +import logging +import datetime +import platform +import requests +import warnings +import threading +import subprocess +import logging.handlers + +import numpy as np +import gradio as gr +import pandas as pd +import soundfile as sf + +from time import sleep +from multiprocessing import cpu_count + +sys.path.append(os.getcwd()) + +from main.tools import huggingface +from main.configs.config import Config +from main.app.based.utils import * + +with gr.Blocks(title=" Ultimate RVC Maker ⚡", theme=theme) as app: + gr.HTML("

Ultimate RVC Maker ⚡

") + + with gr.Tabs(): + with gr.TabItem(translations["separator_tab"], visible=configs.get("separator_tab", True)): + gr.Markdown(f"## {translations['separator_tab']}") + with gr.Row(): + gr.Markdown(translations["4_part"]) + with gr.Row(): + with gr.Column(): + with gr.Group(): + with gr.Row(): + cleaner = gr.Checkbox(label=translations["clear_audio"], value=False, interactive=True, min_width=140) + backing = gr.Checkbox(label=translations["separator_backing"], value=False, interactive=True, min_width=140) + reverb = gr.Checkbox(label=translations["dereveb_audio"], value=False, interactive=True, min_width=140) + backing_reverb = gr.Checkbox(label=translations["dereveb_backing"], value=False, interactive=False, min_width=140) + denoise = gr.Checkbox(label=translations["denoise_mdx"], value=False, interactive=False, min_width=140) + with gr.Row(): + separator_model = gr.Dropdown(label=translations["separator_model"], value=uvr_model[0], choices=uvr_model, interactive=True) + separator_backing_model = gr.Dropdown(label=translations["separator_backing_model"], value="Version-1", choices=["Version-1", "Version-2"], interactive=True, visible=backing.value) + with gr.Row(): + with gr.Column(): + separator_button = gr.Button(translations["separator_tab"], variant="primary") + with gr.Row(): + with gr.Column(): + with gr.Group(): + with gr.Row(): + shifts = gr.Slider(label=translations["shift"], info=translations["shift_info"], minimum=1, maximum=20, value=2, step=1, interactive=True) + segment_size = gr.Slider(label=translations["segments_size"], info=translations["segments_size_info"], minimum=32, maximum=3072, value=256, step=32, interactive=True) + with gr.Row(): + mdx_batch_size = gr.Slider(label=translations["batch_size"], info=translations["mdx_batch_size_info"], minimum=1, maximum=64, value=1, step=1, interactive=True, visible=backing.value or reverb.value or separator_model.value in mdx_model) + with gr.Column(): + with gr.Group(): + with gr.Row(): + overlap = gr.Radio(label=translations["overlap"], info=translations["overlap_info"], choices=["0.25", "0.5", "0.75", "0.99"], value="0.25", interactive=True) + with gr.Row(): + mdx_hop_length = gr.Slider(label="Hop length", info=translations["hop_length_info"], minimum=1, maximum=8192, value=1024, step=1, interactive=True, visible=backing.value or reverb.value or separator_model.value in mdx_model) + with gr.Row(): + with gr.Column(): + input = gr.File(label=translations["drop_audio"], file_types=[".wav", ".mp3", ".flac", ".ogg", ".opus", ".m4a", ".mp4", ".aac", ".alac", ".wma", ".aiff", ".webm", ".ac3"]) + with gr.Accordion(translations["use_url"], open=False): + url = gr.Textbox(label=translations["url_audio"], value="", placeholder="https://www.youtube.com/...", scale=6) + download_button = gr.Button(translations["downloads"]) + with gr.Column(): + with gr.Row(): + clean_strength = gr.Slider(label=translations["clean_strength"], info=translations["clean_strength_info"], minimum=0, maximum=1, value=0.5, step=0.1, interactive=True, visible=cleaner.value) + sample_rate1 = gr.Slider(minimum=8000, maximum=96000, step=1, value=44100, label=translations["sr"], info=translations["sr_info"], interactive=True) + with gr.Accordion(translations["input_output"], open=False): + format = gr.Radio(label=translations["export_format"], info=translations["export_info"], choices=["wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3"], value="wav", interactive=True) + input_audio = gr.Dropdown(label=translations["audio_path"], value="", choices=paths_for_files, allow_custom_value=True, interactive=True) + refesh_separator = gr.Button(translations["refesh"]) + output_separator = gr.Textbox(label=translations["output_folder"], value="audios", placeholder="audios", info=translations["output_folder_info"], interactive=True) + audio_input = gr.Audio(show_download_button=True, interactive=False, label=translations["input_audio"]) + with gr.Row(): + gr.Markdown(translations["output_separator"]) + with gr.Row(): + instruments_audio = gr.Audio(show_download_button=True, interactive=False, label=translations["instruments"]) + original_vocals = gr.Audio(show_download_button=True, interactive=False, label=translations["original_vocal"]) + main_vocals = gr.Audio(show_download_button=True, interactive=False, label=translations["main_vocal"], visible=backing.value) + backing_vocals = gr.Audio(show_download_button=True, interactive=False, label=translations["backing_vocal"], visible=backing.value) + with gr.Row(): + separator_model.change(fn=lambda a, b, c: [visible(a or b or c in mdx_model), visible(a or b or c in mdx_model), valueFalse_interactive(a or b or c in mdx_model), visible(c not in mdx_model)], inputs=[backing, reverb, separator_model], outputs=[mdx_batch_size, mdx_hop_length, denoise, shifts]) + backing.change(fn=lambda a, b, c: [visible(a or b or c in mdx_model), visible(a or b or c in mdx_model), valueFalse_interactive(a or b or c in mdx_model), visible(a), visible(a), visible(a), valueFalse_interactive(a and b)], inputs=[backing, reverb, separator_model], outputs=[mdx_batch_size, mdx_hop_length, denoise, separator_backing_model, main_vocals, backing_vocals, backing_reverb]) + reverb.change(fn=lambda a, b, c: [visible(a or b or c in mdx_model), visible(a or b or c in mdx_model), valueFalse_interactive(a or b or c in mdx_model), valueFalse_interactive(a and b)], inputs=[backing, reverb, separator_model], outputs=[mdx_batch_size, mdx_hop_length, denoise, backing_reverb]) + with gr.Row(): + input_audio.change(fn=lambda audio: audio if os.path.isfile(audio) else None, inputs=[input_audio], outputs=[audio_input]) + cleaner.change(fn=visible, inputs=[cleaner], outputs=[clean_strength]) + with gr.Row(): + input.upload(fn=lambda audio_in: shutil.move(audio_in.name, os.path.join("audios")), inputs=[input], outputs=[input_audio]) + refesh_separator.click(fn=change_audios_choices, inputs=[input_audio], outputs=[input_audio]) + with gr.Row(): + download_button.click( + fn=download_url, + inputs=[url], + outputs=[input_audio, audio_input, url], + api_name='download_url' + ) + separator_button.click( + fn=separator_music, + inputs=[ + input_audio, + output_separator, + format, + shifts, + segment_size, + overlap, + cleaner, + clean_strength, + denoise, + separator_model, + separator_backing_model, + backing, + reverb, + backing_reverb, + mdx_hop_length, + mdx_batch_size, + sample_rate1 + ], + outputs=[original_vocals, instruments_audio, main_vocals, backing_vocals], + api_name='separator_music' + ) + + with gr.TabItem(translations["convert_audio"], visible=configs.get("convert_tab", True)): + gr.Markdown(f"## {translations['convert_audio']}") + with gr.Row(): + gr.Markdown(translations["convert_info"]) + + with gr.Row(): + with gr.Column(): + with gr.Accordion(translations["model_accordion"], open=True): + with gr.Row(): + model_pth = gr.Dropdown(label=translations["model_name"], choices=model_name, value=model_name[0] if len(model_name) >= 1 else "", interactive=True, allow_custom_value=True) + model_index = gr.Dropdown(label=translations["index_path"], choices=index_path, value=index_path[0] if len(index_path) >= 1 else "", interactive=True, allow_custom_value=True) + refesh = gr.Button(translations["refesh"]) + + with gr.Row(): + with gr.Column(): + audio_select = gr.Dropdown(label=translations["select_separate"], choices=[], value="", interactive=True, allow_custom_value=True, visible=False) + convert_button_2 = gr.Button(translations["convert_audio"], visible=False) + with gr.Row(): + with gr.Column(): + input0 = gr.File(label=translations["drop_audio"], file_types=[".wav", ".mp3", ".flac", ".ogg", ".opus", ".m4a", ".mp4", ".aac", ".alac", ".wma", ".aiff", ".webm", ".ac3"]) + play_audio = gr.Audio(show_download_button=True, interactive=False, label=translations["input_audio"]) + with gr.Row(): + with gr.Column(): + with gr.Row(): + index_strength = gr.Slider(label=translations["index_strength"], info=translations["index_strength_info"], minimum=0, maximum=1, value=0.5, step=0.01, interactive=True, visible=model_index.value != "") + with gr.Column(): + with gr.Accordion(translations["input_output"], open=False): + with gr.Column(): + export_format = gr.Radio(label=translations["export_format"], info=translations["export_info"], choices=["wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3"], value="wav", interactive=True) + input_audio0 = gr.Dropdown(label=translations["audio_path"], value="", choices=paths_for_files, info=translations["provide_audio"], allow_custom_value=True, interactive=True) + output_audio = gr.Textbox(label=translations["output_path"], value="audios/output.wav", placeholder="audios/output.wav", info=translations["output_path_info"], interactive=True) + with gr.Column(): + refesh0 = gr.Button(translations["refesh"]) + with gr.Accordion(translations["setting"], open=False): + with gr.Row(): + cleaner0 = gr.Checkbox(label=translations["clear_audio"], value=False, interactive=True) + autotune = gr.Checkbox(label=translations["autotune"], value=False, interactive=True) + use_audio = gr.Checkbox(label=translations["use_audio"], value=False, interactive=True) + checkpointing = gr.Checkbox(label=translations["memory_efficient_training"], value=False, interactive=True) + with gr.Row(): + use_original = gr.Checkbox(label=translations["convert_original"], value=False, interactive=True, visible=use_audio.value) + convert_backing = gr.Checkbox(label=translations["convert_backing"], value=False, interactive=True, visible=use_audio.value) + not_merge_backing = gr.Checkbox(label=translations["not_merge_backing"], value=False, interactive=True, visible=use_audio.value) + merge_instrument = gr.Checkbox(label=translations["merge_instruments"], value=False, interactive=True, visible=use_audio.value) + with gr.Row(): + pitch = gr.Slider(minimum=-20, maximum=20, step=1, info=translations["pitch_info"], label=translations["pitch"], value=0, interactive=True) + clean_strength0 = gr.Slider(label=translations["clean_strength"], info=translations["clean_strength_info"], minimum=0, maximum=1, value=0.5, step=0.1, interactive=True, visible=cleaner0.value) + + with gr.Accordion(translations["f0_method"], open=False): + with gr.Group(): + with gr.Row(): + onnx_f0_mode = gr.Checkbox(label=translations["f0_onnx_mode"], info=translations["f0_onnx_mode_info"], value=False, interactive=True) + unlock_full_method = gr.Checkbox(label=translations["f0_unlock"], info=translations["f0_unlock_info"], value=False, interactive=True) + method = gr.Radio(label=translations["f0_method"], info=translations["f0_method_info"], choices=method_f0+["hybrid"], value="rmvpe", interactive=True) + hybrid_method = gr.Dropdown(label=translations["f0_method_hybrid"], info=translations["f0_method_hybrid_info"], choices=["hybrid[pm+dio]", "hybrid[pm+crepe-tiny]", "hybrid[pm+crepe]", "hybrid[pm+fcpe]", "hybrid[pm+rmvpe]", "hybrid[pm+harvest]", "hybrid[pm+yin]", "hybrid[dio+crepe-tiny]", "hybrid[dio+crepe]", "hybrid[dio+fcpe]", "hybrid[dio+rmvpe]", "hybrid[dio+harvest]", "hybrid[dio+yin]", "hybrid[crepe-tiny+crepe]", "hybrid[crepe-tiny+fcpe]", "hybrid[crepe-tiny+rmvpe]", "hybrid[crepe-tiny+harvest]", "hybrid[crepe+fcpe]", "hybrid[crepe+rmvpe]", "hybrid[crepe+harvest]", "hybrid[crepe+yin]", "hybrid[fcpe+rmvpe]", "hybrid[fcpe+harvest]", "hybrid[fcpe+yin]", "hybrid[rmvpe+harvest]", "hybrid[rmvpe+yin]", "hybrid[harvest+yin]"], value="hybrid[pm+dio]", interactive=True, allow_custom_value=True, visible=method.value == "hybrid") + hop_length = gr.Slider(label="Hop length", info=translations["hop_length_info"], minimum=1, maximum=512, value=128, step=1, interactive=True, visible=False) + with gr.Accordion(translations["f0_file"], open=False): + upload_f0_file = gr.File(label=translations["upload_f0"], file_types=[".txt"]) + f0_file_dropdown = gr.Dropdown(label=translations["f0_file_2"], value="", choices=f0_file, allow_custom_value=True, interactive=True) + refesh_f0_file = gr.Button(translations["refesh"]) + with gr.Accordion(translations["hubert_model"], open=False): + embed_mode = gr.Radio(label=translations["embed_mode"], info=translations["embed_mode_info"], value="fairseq", choices=embedders_mode, interactive=True, visible=True) + embedders = gr.Radio(label=translations["hubert_model"], info=translations["hubert_info"], choices=embedders_model, value="hubert_base", interactive=True) + custom_embedders = gr.Textbox(label=translations["modelname"], info=translations["modelname_info"], value="", placeholder="hubert_base", interactive=True, visible=embedders.value == "custom") + with gr.Accordion(translations["use_presets"], open=False): + with gr.Row(): + presets_name = gr.Dropdown(label=translations["file_preset"], choices=presets_file, value=presets_file[0] if len(presets_file) > 0 else '', interactive=True, allow_custom_value=True) + with gr.Row(): + load_click = gr.Button(translations["load_file"], variant="primary") + refesh_click = gr.Button(translations["refesh"]) + with gr.Accordion(translations["export_file"], open=False): + with gr.Row(): + with gr.Column(): + with gr.Group(): + with gr.Row(): + cleaner_chbox = gr.Checkbox(label=translations["save_clean"], value=True, interactive=True) + autotune_chbox = gr.Checkbox(label=translations["save_autotune"], value=True, interactive=True) + pitch_chbox = gr.Checkbox(label=translations["save_pitch"], value=True, interactive=True) + index_strength_chbox = gr.Checkbox(label=translations["save_index_2"], value=True, interactive=True) + resample_sr_chbox = gr.Checkbox(label=translations["save_resample"], value=True, interactive=True) + filter_radius_chbox = gr.Checkbox(label=translations["save_filter"], value=True, interactive=True) + volume_envelope_chbox = gr.Checkbox(label=translations["save_envelope"], value=True, interactive=True) + protect_chbox = gr.Checkbox(label=translations["save_protect"], value=True, interactive=True) + split_audio_chbox = gr.Checkbox(label=translations["save_split"], value=True, interactive=True) + formant_shifting_chbox = gr.Checkbox(label=translations["formantshift"], value=True, interactive=True) + with gr.Row(): + with gr.Column(): + name_to_save_file = gr.Textbox(label=translations["filename_to_save"]) + save_file_button = gr.Button(translations["export_file"]) + with gr.Row(): + upload_presets = gr.File(label=translations["upload_presets"], file_types=[".json"]) + with gr.Column(): + with gr.Row(): + split_audio = gr.Checkbox(label=translations["split_audio"], value=False, interactive=True) + formant_shifting = gr.Checkbox(label=translations["formantshift"], value=False, interactive=True) + f0_autotune_strength = gr.Slider(minimum=0, maximum=1, label=translations["autotune_rate"], info=translations["autotune_rate_info"], value=1, step=0.1, interactive=True, visible=autotune.value) + resample_sr = gr.Slider(minimum=0, maximum=96000, label=translations["resample"], info=translations["resample_info"], value=0, step=1, interactive=True) + filter_radius = gr.Slider(minimum=0, maximum=7, label=translations["filter_radius"], info=translations["filter_radius_info"], value=3, step=1, interactive=True) + volume_envelope = gr.Slider(minimum=0, maximum=1, label=translations["volume_envelope"], info=translations["volume_envelope_info"], value=1, step=0.1, interactive=True) + protect = gr.Slider(minimum=0, maximum=1, label=translations["protect"], info=translations["protect_info"], value=0.5, step=0.01, interactive=True) + with gr.Row(): + formant_qfrency = gr.Slider(value=1.0, label=translations["formant_qfrency"], info=translations["formant_qfrency"], minimum=0.0, maximum=16.0, step=0.1, interactive=True, visible=False) + formant_timbre = gr.Slider(value=1.0, label=translations["formant_timbre"], info=translations["formant_timbre"], minimum=0.0, maximum=16.0, step=0.1, interactive=True, visible=False) + with gr.Row(): + convert_button = gr.Button(translations["convert_audio"], variant="primary") + gr.Markdown(translations["output_convert"]) + with gr.Row(): + main_convert = gr.Audio(show_download_button=True, interactive=False, label=translations["main_convert"]) + backing_convert = gr.Audio(show_download_button=True, interactive=False, label=translations["convert_backing"], visible=convert_backing.value) + main_backing = gr.Audio(show_download_button=True, interactive=False, label=translations["main_or_backing"], visible=convert_backing.value) + with gr.Row(): + original_convert = gr.Audio(show_download_button=True, interactive=False, label=translations["convert_original"], visible=use_original.value) + vocal_instrument = gr.Audio(show_download_button=True, interactive=False, label=translations["voice_or_instruments"], visible=merge_instrument.value) + with gr.Row(): + upload_f0_file.upload(fn=lambda inp: shutil.move(inp.name, os.path.join("assets", "f0")), inputs=[upload_f0_file], outputs=[f0_file_dropdown]) + refesh_f0_file.click(fn=change_f0_choices, inputs=[], outputs=[f0_file_dropdown]) + unlock_full_method.change(fn=unlock_f0, inputs=[unlock_full_method], outputs=[method]) + with gr.Row(): + load_click.click( + fn=load_presets, + inputs=[ + presets_name, + cleaner0, + autotune, + pitch, + clean_strength0, + index_strength, + resample_sr, + filter_radius, + volume_envelope, + protect, + split_audio, + f0_autotune_strength, + formant_qfrency, + formant_timbre + ], + outputs=[ + cleaner0, + autotune, + pitch, + clean_strength0, + index_strength, + resample_sr, + filter_radius, + volume_envelope, + protect, + split_audio, + f0_autotune_strength, + formant_shifting, + formant_qfrency, + formant_timbre + ] + ) + refesh_click.click(fn=change_preset_choices, inputs=[], outputs=[presets_name]) + save_file_button.click( + fn=save_presets, + inputs=[ + name_to_save_file, + cleaner0, + autotune, + pitch, + clean_strength0, + index_strength, + resample_sr, + filter_radius, + volume_envelope, + protect, + split_audio, + f0_autotune_strength, + cleaner_chbox, + autotune_chbox, + pitch_chbox, + index_strength_chbox, + resample_sr_chbox, + filter_radius_chbox, + volume_envelope_chbox, + protect_chbox, + split_audio_chbox, + formant_shifting_chbox, + formant_shifting, + formant_qfrency, + formant_timbre + ], + outputs=[presets_name] + ) + with gr.Row(): + upload_presets.upload(fn=lambda audio_in: shutil.move(audio_in.name, os.path.join("assets", "presets")), inputs=[upload_presets], outputs=[presets_name]) + autotune.change(fn=visible, inputs=[autotune], outputs=[f0_autotune_strength]) + use_audio.change(fn=lambda a: [visible(a), visible(a), visible(a), visible(a), visible(a), valueFalse_interactive(a), valueFalse_interactive(a), valueFalse_interactive(a), valueFalse_interactive(a), visible(not a), visible(not a), visible(not a), visible(not a)], inputs=[use_audio], outputs=[main_backing, use_original, convert_backing, not_merge_backing, merge_instrument, use_original, convert_backing, not_merge_backing, merge_instrument, input_audio0, output_audio, input0, play_audio]) + with gr.Row(): + convert_backing.change(fn=lambda a,b: [change_backing_choices(a, b), visible(a)], inputs=[convert_backing, not_merge_backing], outputs=[use_original, backing_convert]) + use_original.change(fn=lambda audio, original: [visible(original), visible(not original), visible(audio and not original), valueFalse_interactive(not original), valueFalse_interactive(not original)], inputs=[use_audio, use_original], outputs=[original_convert, main_convert, main_backing, convert_backing, not_merge_backing]) + cleaner0.change(fn=visible, inputs=[cleaner0], outputs=[clean_strength0]) + with gr.Row(): + merge_instrument.change(fn=visible, inputs=[merge_instrument], outputs=[vocal_instrument]) + not_merge_backing.change(fn=lambda audio, merge, cvb: [visible(audio and not merge), change_backing_choices(cvb, merge)], inputs=[use_audio, not_merge_backing, convert_backing], outputs=[main_backing, use_original]) + method.change(fn=lambda method, hybrid: [visible(method == "hybrid"), hoplength_show(method, hybrid)], inputs=[method, hybrid_method], outputs=[hybrid_method, hop_length]) + with gr.Row(): + hybrid_method.change(fn=hoplength_show, inputs=[method, hybrid_method], outputs=[hop_length]) + refesh.click(fn=change_models_choices, inputs=[], outputs=[model_pth, model_index]) + model_pth.change(fn=get_index, inputs=[model_pth], outputs=[model_index]) + with gr.Row(): + input0.upload(fn=lambda audio_in: shutil.move(audio_in.name, os.path.join("audios")), inputs=[input0], outputs=[input_audio0]) + input_audio0.change(fn=lambda audio: audio if os.path.isfile(audio) else None, inputs=[input_audio0], outputs=[play_audio]) + formant_shifting.change(fn=lambda a: [visible(a)]*2, inputs=[formant_shifting], outputs=[formant_qfrency, formant_timbre]) + with gr.Row(): + embedders.change(fn=lambda embedders: visible(embedders == "custom"), inputs=[embedders], outputs=[custom_embedders]) + refesh0.click(fn=change_audios_choices, inputs=[input_audio0], outputs=[input_audio0]) + model_index.change(fn=index_strength_show, inputs=[model_index], outputs=[index_strength]) + with gr.Row(): + audio_select.change(fn=lambda: visible(True), inputs=[], outputs=[convert_button_2]) + convert_button.click(fn=lambda: visible(False), inputs=[], outputs=[convert_button]) + convert_button_2.click(fn=lambda: [visible(False), visible(False)], inputs=[], outputs=[audio_select, convert_button_2]) + with gr.Row(): + convert_button.click( + fn=convert_selection, + inputs=[ + cleaner0, + autotune, + use_audio, + use_original, + convert_backing, + not_merge_backing, + merge_instrument, + pitch, + clean_strength0, + model_pth, + model_index, + index_strength, + input_audio0, + output_audio, + export_format, + method, + hybrid_method, + hop_length, + embedders, + custom_embedders, + resample_sr, + filter_radius, + volume_envelope, + protect, + split_audio, + f0_autotune_strength, + checkpointing, + onnx_f0_mode, + formant_shifting, + formant_qfrency, + formant_timbre, + f0_file_dropdown, + embed_mode + ], + outputs=[audio_select, main_convert, backing_convert, main_backing, original_convert, vocal_instrument, convert_button], + api_name="convert_selection" + ) + embed_mode.change(fn=visible_embedders, inputs=[embed_mode], outputs=[embedders]) + convert_button_2.click( + fn=convert_audio, + inputs=[ + cleaner0, + autotune, + use_audio, + use_original, + convert_backing, + not_merge_backing, + merge_instrument, + pitch, + clean_strength0, + model_pth, + model_index, + index_strength, + input_audio0, + output_audio, + export_format, + method, + hybrid_method, + hop_length, + embedders, + custom_embedders, + resample_sr, + filter_radius, + volume_envelope, + protect, + split_audio, + f0_autotune_strength, + audio_select, + checkpointing, + onnx_f0_mode, + formant_shifting, + formant_qfrency, + formant_timbre, + f0_file_dropdown, + embed_mode + ], + outputs=[main_convert, backing_convert, main_backing, original_convert, vocal_instrument, convert_button], + api_name="convert_audio" + ) + + with gr.TabItem(translations["convert_with_whisper"], visible=configs.get("convert_with_whisper", True)): + gr.Markdown(f"## {translations['convert_with_whisper']}") + with gr.Row(): + gr.Markdown(translations["convert_with_whisper_info"]) + with gr.Row(): + with gr.Column(): + with gr.Group(): + with gr.Row(): + cleaner2 = gr.Checkbox(label=translations["clear_audio"], value=False, interactive=True) + autotune2 = gr.Checkbox(label=translations["autotune"], value=False, interactive=True) + checkpointing2 = gr.Checkbox(label=translations["memory_efficient_training"], value=False, interactive=True) + formant_shifting2 = gr.Checkbox(label=translations["formantshift"], value=False, interactive=True) + with gr.Row(): + num_spk = gr.Slider(minimum=2, maximum=8, step=1, info=translations["num_spk_info"], label=translations["num_spk"], value=2, interactive=True) + with gr.Row(): + with gr.Column(): + convert_button3 = gr.Button(translations["convert_audio"], variant="primary") + with gr.Row(): + with gr.Column(): + with gr.Accordion(translations["model_accordion"] + " 1", open=True): + with gr.Row(): + model_pth2 = gr.Dropdown(label=translations["model_name"], choices=model_name, value=model_name[0] if len(model_name) >= 1 else "", interactive=True, allow_custom_value=True) + model_index2 = gr.Dropdown(label=translations["index_path"], choices=index_path, value=index_path[0] if len(index_path) >= 1 else "", interactive=True, allow_custom_value=True) + with gr.Row(): + refesh2 = gr.Button(translations["refesh"]) + with gr.Row(): + pitch3 = gr.Slider(minimum=-20, maximum=20, step=1, info=translations["pitch_info"], label=translations["pitch"], value=0, interactive=True) + index_strength2 = gr.Slider(label=translations["index_strength"], info=translations["index_strength_info"], minimum=0, maximum=1, value=0.5, step=0.01, interactive=True, visible=model_index2.value != "") + with gr.Accordion(translations["input_output"], open=False): + with gr.Column(): + export_format2 = gr.Radio(label=translations["export_format"], info=translations["export_info"], choices=["wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3"], value="wav", interactive=True) + input_audio1 = gr.Dropdown(label=translations["audio_path"], value="", choices=paths_for_files, info=translations["provide_audio"], allow_custom_value=True, interactive=True) + output_audio2 = gr.Textbox(label=translations["output_path"], value="audios/output.wav", placeholder="audios/output.wav", info=translations["output_path_info"], interactive=True) + with gr.Column(): + refesh4 = gr.Button(translations["refesh"]) + with gr.Row(): + input2 = gr.File(label=translations["drop_audio"], file_types=[".wav", ".mp3", ".flac", ".ogg", ".opus", ".m4a", ".mp4", ".aac", ".alac", ".wma", ".aiff", ".webm", ".ac3"]) + with gr.Column(): + with gr.Accordion(translations["model_accordion"] + " 2", open=True): + with gr.Row(): + model_pth3 = gr.Dropdown(label=translations["model_name"], choices=model_name, value=model_name[0] if len(model_name) >= 1 else "", interactive=True, allow_custom_value=True) + model_index3 = gr.Dropdown(label=translations["index_path"], choices=index_path, value=index_path[0] if len(index_path) >= 1 else "", interactive=True, allow_custom_value=True) + with gr.Row(): + refesh3 = gr.Button(translations["refesh"]) + with gr.Row(): + pitch4 = gr.Slider(minimum=-20, maximum=20, step=1, info=translations["pitch_info"], label=translations["pitch"], value=0, interactive=True) + index_strength3 = gr.Slider(label=translations["index_strength"], info=translations["index_strength_info"], minimum=0, maximum=1, value=0.5, step=0.01, interactive=True, visible=model_index3.value != "") + with gr.Accordion(translations["setting"], open=False): + with gr.Row(): + model_size = gr.Radio(label=translations["model_size"], info=translations["model_size_info"], choices=["tiny", "tiny.en", "base", "base.en", "small", "small.en", "medium", "medium.en", "large-v1", "large-v2", "large-v3", "large-v3-turbo"], value="medium", interactive=True) + with gr.Accordion(translations["f0_method"], open=False): + with gr.Group(): + with gr.Row(): + onnx_f0_mode4 = gr.Checkbox(label=translations["f0_onnx_mode"], info=translations["f0_onnx_mode_info"], value=False, interactive=True) + unlock_full_method2 = gr.Checkbox(label=translations["f0_unlock"], info=translations["f0_unlock_info"], value=False, interactive=True) + method3 = gr.Radio(label=translations["f0_method"], info=translations["f0_method_info"], choices=method_f0+["hybrid"], value="rmvpe", interactive=True) + hybrid_method3 = gr.Dropdown(label=translations["f0_method_hybrid"], info=translations["f0_method_hybrid_info"], choices=["hybrid[pm+dio]", "hybrid[pm+crepe-tiny]", "hybrid[pm+crepe]", "hybrid[pm+fcpe]", "hybrid[pm+rmvpe]", "hybrid[pm+harvest]", "hybrid[pm+yin]", "hybrid[dio+crepe-tiny]", "hybrid[dio+crepe]", "hybrid[dio+fcpe]", "hybrid[dio+rmvpe]", "hybrid[dio+harvest]", "hybrid[dio+yin]", "hybrid[crepe-tiny+crepe]", "hybrid[crepe-tiny+fcpe]", "hybrid[crepe-tiny+rmvpe]", "hybrid[crepe-tiny+harvest]", "hybrid[crepe+fcpe]", "hybrid[crepe+rmvpe]", "hybrid[crepe+harvest]", "hybrid[crepe+yin]", "hybrid[fcpe+rmvpe]", "hybrid[fcpe+harvest]", "hybrid[fcpe+yin]", "hybrid[rmvpe+harvest]", "hybrid[rmvpe+yin]", "hybrid[harvest+yin]"], value="hybrid[pm+dio]", interactive=True, allow_custom_value=True, visible=method3.value == "hybrid") + hop_length3 = gr.Slider(label="Hop length", info=translations["hop_length_info"], minimum=1, maximum=512, value=128, step=1, interactive=True, visible=False) + with gr.Accordion(translations["hubert_model"], open=False): + embed_mode3 = gr.Radio(label=translations["embed_mode"], info=translations["embed_mode_info"], value="fairseq", choices=embedders_mode, interactive=True, visible=True) + embedders3 = gr.Radio(label=translations["hubert_model"], info=translations["hubert_info"], choices=embedders_model, value="hubert_base", interactive=True) + custom_embedders3 = gr.Textbox(label=translations["modelname"], info=translations["modelname_info"], value="", placeholder="hubert_base", interactive=True, visible=embedders3.value == "custom") + with gr.Column(): + clean_strength3 = gr.Slider(label=translations["clean_strength"], info=translations["clean_strength_info"], minimum=0, maximum=1, value=0.5, step=0.1, interactive=True, visible=cleaner2.value) + f0_autotune_strength3 = gr.Slider(minimum=0, maximum=1, label=translations["autotune_rate"], info=translations["autotune_rate_info"], value=1, step=0.1, interactive=True, visible=autotune.value) + resample_sr3 = gr.Slider(minimum=0, maximum=96000, label=translations["resample"], info=translations["resample_info"], value=0, step=1, interactive=True) + filter_radius3 = gr.Slider(minimum=0, maximum=7, label=translations["filter_radius"], info=translations["filter_radius_info"], value=3, step=1, interactive=True) + volume_envelope3 = gr.Slider(minimum=0, maximum=1, label=translations["volume_envelope"], info=translations["volume_envelope_info"], value=1, step=0.1, interactive=True) + protect3 = gr.Slider(minimum=0, maximum=1, label=translations["protect"], info=translations["protect_info"], value=0.5, step=0.01, interactive=True) + with gr.Row(): + formant_qfrency3 = gr.Slider(value=1.0, label=translations["formant_qfrency"] + " 1", info=translations["formant_qfrency"], minimum=0.0, maximum=16.0, step=0.1, interactive=True, visible=False) + formant_timbre3 = gr.Slider(value=1.0, label=translations["formant_timbre"] + " 1", info=translations["formant_timbre"], minimum=0.0, maximum=16.0, step=0.1, interactive=True, visible=False) + with gr.Row(): + formant_qfrency4 = gr.Slider(value=1.0, label=translations["formant_qfrency"] + " 2", info=translations["formant_qfrency"], minimum=0.0, maximum=16.0, step=0.1, interactive=True, visible=False) + formant_timbre4 = gr.Slider(value=1.0, label=translations["formant_timbre"] + " 2", info=translations["formant_timbre"], minimum=0.0, maximum=16.0, step=0.1, interactive=True, visible=False) + with gr.Row(): + gr.Markdown(translations["input_output"]) + with gr.Row(): + play_audio2 = gr.Audio(show_download_button=True, interactive=False, label=translations["input_audio"]) + play_audio3 = gr.Audio(show_download_button=True, interactive=False, label=translations["output_file_tts_convert"]) + with gr.Row(): + autotune2.change(fn=visible, inputs=[autotune2], outputs=[f0_autotune_strength3]) + cleaner2.change(fn=visible, inputs=[cleaner2], outputs=[clean_strength3]) + method3.change(fn=lambda method, hybrid: [visible(method == "hybrid"), hoplength_show(method, hybrid)], inputs=[method3, hybrid_method3], outputs=[hybrid_method3, hop_length3]) + with gr.Row(): + hybrid_method3.change(fn=hoplength_show, inputs=[method3, hybrid_method3], outputs=[hop_length3]) + refesh2.click(fn=change_models_choices, inputs=[], outputs=[model_pth2, model_index2]) + model_pth2.change(fn=get_index, inputs=[model_pth2], outputs=[model_index2]) + with gr.Row(): + refesh3.click(fn=change_models_choices, inputs=[], outputs=[model_pth3, model_index3]) + model_pth3.change(fn=get_index, inputs=[model_pth3], outputs=[model_index3]) + input2.upload(fn=lambda audio_in: shutil.move(audio_in.name, os.path.join("audios")), inputs=[input2], outputs=[input_audio1]) + with gr.Row(): + input_audio1.change(fn=lambda audio: audio if os.path.isfile(audio) else None, inputs=[input_audio1], outputs=[play_audio2]) + formant_shifting2.change(fn=lambda a: [visible(a)]*4, inputs=[formant_shifting2], outputs=[formant_qfrency3, formant_timbre3, formant_qfrency4, formant_timbre4]) + embedders3.change(fn=lambda embedders: visible(embedders == "custom"), inputs=[embedders3], outputs=[custom_embedders3]) + with gr.Row(): + refesh4.click(fn=change_audios_choices, inputs=[input_audio1], outputs=[input_audio1]) + model_index2.change(fn=index_strength_show, inputs=[model_index2], outputs=[index_strength2]) + model_index3.change(fn=index_strength_show, inputs=[model_index3], outputs=[index_strength3]) + with gr.Row(): + unlock_full_method2.change(fn=unlock_f0, inputs=[unlock_full_method2], outputs=[method3]) + embed_mode3.change(fn=visible_embedders, inputs=[embed_mode3], outputs=[embedders3]) + convert_button3.click( + fn=convert_with_whisper, + inputs=[ + num_spk, + model_size, + cleaner2, + clean_strength3, + autotune2, + f0_autotune_strength3, + checkpointing2, + model_pth2, + model_pth3, + model_index2, + model_index3, + pitch3, + pitch4, + index_strength2, + index_strength3, + export_format2, + input_audio1, + output_audio2, + onnx_f0_mode4, + method3, + hybrid_method3, + hop_length3, + embed_mode3, + embedders3, + custom_embedders3, + resample_sr3, + filter_radius3, + volume_envelope3, + protect3, + formant_shifting2, + formant_qfrency3, + formant_timbre3, + formant_qfrency4, + formant_timbre4, + ], + outputs=[play_audio3], + api_name="convert_with_whisper" + ) + + with gr.TabItem(translations["convert_text"], visible=configs.get("tts_tab", True)): + gr.Markdown(translations["convert_text_markdown"]) + with gr.Row(): + gr.Markdown(translations["convert_text_markdown_2"]) + with gr.Row(): + with gr.Column(): + with gr.Group(): + with gr.Row(): + use_txt = gr.Checkbox(label=translations["input_txt"], value=False, interactive=True) + google_tts_check_box = gr.Checkbox(label=translations["googletts"], value=False, interactive=True) + prompt = gr.Textbox(label=translations["text_to_speech"], value="", placeholder="Hello Words", lines=3) + with gr.Column(): + speed = gr.Slider(label=translations["voice_speed"], info=translations["voice_speed_info"], minimum=-100, maximum=100, value=0, step=1) + pitch0 = gr.Slider(minimum=-20, maximum=20, step=1, info=translations["pitch_info"], label=translations["pitch"], value=0, interactive=True) + with gr.Row(): + tts_button = gr.Button(translations["tts_1"], variant="primary", scale=2) + convert_button0 = gr.Button(translations["tts_2"], variant="secondary", scale=2) + with gr.Row(): + with gr.Column(): + txt_input = gr.File(label=translations["drop_text"], file_types=[".txt", ".srt"], visible=use_txt.value) + tts_voice = gr.Dropdown(label=translations["voice"], choices=edgetts, interactive=True, value="vi-VN-NamMinhNeural") + tts_pitch = gr.Slider(minimum=-20, maximum=20, step=1, info=translations["pitch_info_2"], label=translations["pitch"], value=0, interactive=True) + with gr.Column(): + with gr.Accordion(translations["model_accordion"], open=True): + with gr.Row(): + model_pth0 = gr.Dropdown(label=translations["model_name"], choices=model_name, value=model_name[0] if len(model_name) >= 1 else "", interactive=True, allow_custom_value=True) + model_index0 = gr.Dropdown(label=translations["index_path"], choices=index_path, value=index_path[0] if len(index_path) >= 1 else "", interactive=True, allow_custom_value=True) + with gr.Row(): + refesh1 = gr.Button(translations["refesh"]) + with gr.Row(): + index_strength0 = gr.Slider(label=translations["index_strength"], info=translations["index_strength_info"], minimum=0, maximum=1, value=0.5, step=0.01, interactive=True, visible=model_index0.value != "") + with gr.Accordion(translations["output_path"], open=False): + export_format0 = gr.Radio(label=translations["export_format"], info=translations["export_info"], choices=["wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3"], value="wav", interactive=True) + output_audio0 = gr.Textbox(label=translations["output_tts"], value="audios/tts.wav", placeholder="audios/tts.wav", info=translations["tts_output"], interactive=True) + output_audio1 = gr.Textbox(label=translations["output_tts_convert"], value="audios/tts-convert.wav", placeholder="audios/tts-convert.wav", info=translations["tts_output"], interactive=True) + with gr.Accordion(translations["setting"], open=False): + with gr.Accordion(translations["f0_method"], open=False): + with gr.Group(): + with gr.Row(): + onnx_f0_mode1 = gr.Checkbox(label=translations["f0_onnx_mode"], info=translations["f0_onnx_mode_info"], value=False, interactive=True) + unlock_full_method3 = gr.Checkbox(label=translations["f0_unlock"], info=translations["f0_unlock_info"], value=False, interactive=True) + method0 = gr.Radio(label=translations["f0_method"], info=translations["f0_method_info"], choices=method_f0+["hybrid"], value="rmvpe", interactive=True) + hybrid_method0 = gr.Dropdown(label=translations["f0_method_hybrid"], info=translations["f0_method_hybrid_info"], choices=["hybrid[pm+dio]", "hybrid[pm+crepe-tiny]", "hybrid[pm+crepe]", "hybrid[pm+fcpe]", "hybrid[pm+rmvpe]", "hybrid[pm+harvest]", "hybrid[pm+yin]", "hybrid[dio+crepe-tiny]", "hybrid[dio+crepe]", "hybrid[dio+fcpe]", "hybrid[dio+rmvpe]", "hybrid[dio+harvest]", "hybrid[dio+yin]", "hybrid[crepe-tiny+crepe]", "hybrid[crepe-tiny+fcpe]", "hybrid[crepe-tiny+rmvpe]", "hybrid[crepe-tiny+harvest]", "hybrid[crepe+fcpe]", "hybrid[crepe+rmvpe]", "hybrid[crepe+harvest]", "hybrid[crepe+yin]", "hybrid[fcpe+rmvpe]", "hybrid[fcpe+harvest]", "hybrid[fcpe+yin]", "hybrid[rmvpe+harvest]", "hybrid[rmvpe+yin]", "hybrid[harvest+yin]"], value="hybrid[pm+dio]", interactive=True, allow_custom_value=True, visible=method0.value == "hybrid") + hop_length0 = gr.Slider(label="Hop length", info=translations["hop_length_info"], minimum=1, maximum=512, value=128, step=1, interactive=True, visible=False) + with gr.Accordion(translations["f0_file"], open=False): + upload_f0_file0 = gr.File(label=translations["upload_f0"], file_types=[".txt"]) + f0_file_dropdown0 = gr.Dropdown(label=translations["f0_file_2"], value="", choices=f0_file, allow_custom_value=True, interactive=True) + refesh_f0_file0 = gr.Button(translations["refesh"]) + with gr.Accordion(translations["hubert_model"], open=False): + embed_mode1 = gr.Radio(label=translations["embed_mode"], info=translations["embed_mode_info"], value="fairseq", choices=embedders_mode, interactive=True, visible=True) + embedders0 = gr.Radio(label=translations["hubert_model"], info=translations["hubert_info"], choices=embedders_model, value="hubert_base", interactive=True) + custom_embedders0 = gr.Textbox(label=translations["modelname"], info=translations["modelname_info"], value="", placeholder="hubert_base", interactive=True, visible=embedders0.value == "custom") + with gr.Group(): + with gr.Row(): + formant_shifting1 = gr.Checkbox(label=translations["formantshift"], value=False, interactive=True) + split_audio0 = gr.Checkbox(label=translations["split_audio"], value=False, interactive=True) + cleaner1 = gr.Checkbox(label=translations["clear_audio"], value=False, interactive=True) + autotune3 = gr.Checkbox(label=translations["autotune"], value=False, interactive=True) + checkpointing0 = gr.Checkbox(label=translations["memory_efficient_training"], value=False, interactive=True) + with gr.Column(): + f0_autotune_strength0 = gr.Slider(minimum=0, maximum=1, label=translations["autotune_rate"], info=translations["autotune_rate_info"], value=1, step=0.1, interactive=True, visible=autotune3.value) + clean_strength1 = gr.Slider(label=translations["clean_strength"], info=translations["clean_strength_info"], minimum=0, maximum=1, value=0.5, step=0.1, interactive=True, visible=cleaner1.value) + resample_sr0 = gr.Slider(minimum=0, maximum=96000, label=translations["resample"], info=translations["resample_info"], value=0, step=1, interactive=True) + filter_radius0 = gr.Slider(minimum=0, maximum=7, label=translations["filter_radius"], info=translations["filter_radius_info"], value=3, step=1, interactive=True) + volume_envelope0 = gr.Slider(minimum=0, maximum=1, label=translations["volume_envelope"], info=translations["volume_envelope_info"], value=1, step=0.1, interactive=True) + protect0 = gr.Slider(minimum=0, maximum=1, label=translations["protect"], info=translations["protect_info"], value=0.5, step=0.01, interactive=True) + with gr.Row(): + formant_qfrency1 = gr.Slider(value=1.0, label=translations["formant_qfrency"], info=translations["formant_qfrency"], minimum=0.0, maximum=16.0, step=0.1, interactive=True, visible=False) + formant_timbre1 = gr.Slider(value=1.0, label=translations["formant_timbre"], info=translations["formant_timbre"], minimum=0.0, maximum=16.0, step=0.1, interactive=True, visible=False) + with gr.Row(): + gr.Markdown(translations["output_tts_markdown"]) + with gr.Row(): + tts_voice_audio = gr.Audio(show_download_button=True, interactive=False, label=translations["output_text_to_speech"]) + tts_voice_convert = gr.Audio(show_download_button=True, interactive=False, label=translations["output_file_tts_convert"]) + with gr.Row(): + unlock_full_method3.change(fn=unlock_f0, inputs=[unlock_full_method3], outputs=[method0]) + upload_f0_file0.upload(fn=lambda inp: shutil.move(inp.name, os.path.join("assets", "f0")), inputs=[upload_f0_file0], outputs=[f0_file_dropdown0]) + refesh_f0_file0.click(fn=change_f0_choices, inputs=[], outputs=[f0_file_dropdown0]) + with gr.Row(): + embed_mode1.change(fn=visible_embedders, inputs=[embed_mode1], outputs=[embedders0]) + autotune3.change(fn=visible, inputs=[autotune3], outputs=[f0_autotune_strength0]) + model_pth0.change(fn=get_index, inputs=[model_pth0], outputs=[model_index0]) + with gr.Row(): + cleaner1.change(fn=visible, inputs=[cleaner1], outputs=[clean_strength1]) + method0.change(fn=lambda method, hybrid: [visible(method == "hybrid"), hoplength_show(method, hybrid)], inputs=[method0, hybrid_method0], outputs=[hybrid_method0, hop_length0]) + hybrid_method0.change(fn=hoplength_show, inputs=[method0, hybrid_method0], outputs=[hop_length0]) + with gr.Row(): + refesh1.click(fn=change_models_choices, inputs=[], outputs=[model_pth0, model_index0]) + embedders0.change(fn=lambda embedders: visible(embedders == "custom"), inputs=[embedders0], outputs=[custom_embedders0]) + formant_shifting1.change(fn=lambda a: [visible(a)]*2, inputs=[formant_shifting1], outputs=[formant_qfrency1, formant_timbre1]) + with gr.Row(): + model_index0.change(fn=index_strength_show, inputs=[model_index0], outputs=[index_strength0]) + txt_input.upload(fn=process_input, inputs=[txt_input], outputs=[prompt]) + use_txt.change(fn=visible, inputs=[use_txt], outputs=[txt_input]) + with gr.Row(): + google_tts_check_box.change(fn=change_tts_voice_choices, inputs=[google_tts_check_box], outputs=[tts_voice]) + tts_button.click( + fn=TTS, + inputs=[ + prompt, + tts_voice, + speed, + output_audio0, + tts_pitch, + google_tts_check_box, + txt_input + ], + outputs=[tts_voice_audio], + api_name="text-to-speech" + ) + convert_button0.click( + fn=convert_tts, + inputs=[ + cleaner1, + autotune3, + pitch0, + clean_strength1, + model_pth0, + model_index0, + index_strength0, + output_audio0, + output_audio1, + export_format0, + method0, + hybrid_method0, + hop_length0, + embedders0, + custom_embedders0, + resample_sr0, + filter_radius0, + volume_envelope0, + protect0, + split_audio0, + f0_autotune_strength0, + checkpointing0, + onnx_f0_mode1, + formant_shifting1, + formant_qfrency1, + formant_timbre1, + f0_file_dropdown0, + embed_mode1 + ], + outputs=[tts_voice_convert], + api_name="convert_tts" + ) + + with gr.TabItem(translations["audio_editing"], visible=configs.get("audioldm2", True)): + gr.Markdown(translations["audio_editing_info"]) + with gr.Row(): + gr.Markdown(translations["audio_editing_markdown"]) + with gr.Row(): + with gr.Column(): + with gr.Group(): + with gr.Row(): + save_compute = gr.Checkbox(label=translations["save_compute"], value=True, interactive=True) + tar_prompt = gr.Textbox(label=translations["target_prompt"], info=translations["target_prompt_info"], placeholder="Piano and violin cover", lines=5, interactive=True) + with gr.Column(): + cfg_scale_src = gr.Slider(value=3, minimum=0.5, maximum=25, label=translations["cfg_scale_src"], info=translations["cfg_scale_src_info"], interactive=True) + cfg_scale_tar = gr.Slider(value=12, minimum=0.5, maximum=25, label=translations["cfg_scale_tar"], info=translations["cfg_scale_tar_info"], interactive=True) + with gr.Row(): + edit_button = gr.Button(translations["editing"], variant="primary") + with gr.Row(): + with gr.Column(): + drop_audio_file = gr.File(label=translations["drop_audio"], file_types=[".wav", ".mp3", ".flac", ".ogg", ".opus", ".m4a", ".mp4", ".aac", ".alac", ".wma", ".aiff", ".webm", ".ac3"]) + display_audio = gr.Audio(show_download_button=True, interactive=False, label=translations["input_audio"]) + with gr.Column(): + with gr.Accordion(translations["input_output"], open=False): + with gr.Column(): + export_audio_format = gr.Radio(label=translations["export_format"], info=translations["export_info"], choices=["wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3"], value="wav", interactive=True) + input_audiopath = gr.Dropdown(label=translations["audio_path"], value="", choices=paths_for_files, info=translations["provide_audio"], allow_custom_value=True, interactive=True) + output_audiopath = gr.Textbox(label=translations["output_path"], value="audios/output.wav", placeholder="audios/output.wav", info=translations["output_path_info"], interactive=True) + with gr.Column(): + refesh_audio = gr.Button(translations["refesh"]) + with gr.Accordion(translations["setting"], open=False): + audioldm2_model = gr.Radio(label=translations["audioldm2_model"], info=translations["audioldm2_model_info"], choices=["audioldm2", "audioldm2-large", "audioldm2-music"], value="audioldm2-music", interactive=True) + with gr.Row(): + src_prompt = gr.Textbox(label=translations["source_prompt"], lines=2, interactive=True, info=translations["source_prompt_info"], placeholder="A recording of a happy upbeat classical music piece") + with gr.Row(): + with gr.Column(): + audioldm2_sample_rate = gr.Slider(minimum=8000, maximum=96000, label=translations["sr"], info=translations["sr_info"], value=44100, step=1, interactive=True) + t_start = gr.Slider(minimum=15, maximum=85, value=45, step=1, label=translations["t_start"], interactive=True, info=translations["t_start_info"]) + steps = gr.Slider(value=50, step=1, minimum=10, maximum=300, label=translations["steps_label"], info=translations["steps_info"], interactive=True) + with gr.Row(): + gr.Markdown(translations["output_audio"]) + with gr.Row(): + output_audioldm2 = gr.Audio(show_download_button=True, interactive=False, label=translations["output_audio"]) + with gr.Row(): + refesh_audio.click(fn=change_audios_choices, inputs=[input_audiopath], outputs=[input_audiopath]) + drop_audio_file.upload(fn=lambda audio_in: shutil.move(audio_in.name, os.path.join("audios")), inputs=[drop_audio_file], outputs=[input_audiopath]) + input_audiopath.change(fn=lambda audio: audio if os.path.isfile(audio) else None, inputs=[input_audiopath], outputs=[display_audio]) + with gr.Row(): + edit_button.click( + fn=run_audioldm2, + inputs=[ + input_audiopath, + output_audiopath, + export_audio_format, + audioldm2_sample_rate, + audioldm2_model, + src_prompt, + tar_prompt, + steps, + cfg_scale_src, + cfg_scale_tar, + t_start, + save_compute + ], + outputs=[output_audioldm2], + api_name="audioldm2" + ) + + with gr.TabItem(translations["audio_effects"], visible=configs.get("effects_tab", True)): + gr.Markdown(translations["apply_audio_effects"]) + with gr.Row(): + gr.Markdown(translations["audio_effects_edit"]) + with gr.Row(): + with gr.Column(): + with gr.Row(): + reverb_check_box = gr.Checkbox(label=translations["reverb"], value=False, interactive=True) + chorus_check_box = gr.Checkbox(label=translations["chorus"], value=False, interactive=True) + delay_check_box = gr.Checkbox(label=translations["delay"], value=False, interactive=True) + phaser_check_box = gr.Checkbox(label=translations["phaser"], value=False, interactive=True) + compressor_check_box = gr.Checkbox(label=translations["compressor"], value=False, interactive=True) + more_options = gr.Checkbox(label=translations["more_option"], value=False, interactive=True) + with gr.Row(): + with gr.Accordion(translations["input_output"], open=False): + with gr.Row(): + upload_audio = gr.File(label=translations["drop_audio"], file_types=[".wav", ".mp3", ".flac", ".ogg", ".opus", ".m4a", ".mp4", ".aac", ".alac", ".wma", ".aiff", ".webm", ".ac3"]) + with gr.Row(): + audio_in_path = gr.Dropdown(label=translations["input_audio"], value="", choices=paths_for_files, info=translations["provide_audio"], interactive=True, allow_custom_value=True) + audio_out_path = gr.Textbox(label=translations["output_audio"], value="audios/audio_effects.wav", placeholder="audios/audio_effects.wav", info=translations["provide_output"], interactive=True) + with gr.Row(): + with gr.Column(): + audio_combination = gr.Checkbox(label=translations["merge_instruments"], value=False, interactive=True) + audio_combination_input = gr.Dropdown(label=translations["input_audio"], value="", choices=paths_for_files, info=translations["provide_audio"], interactive=True, allow_custom_value=True, visible=audio_combination.value) + with gr.Row(): + audio_effects_refesh = gr.Button(translations["refesh"]) + with gr.Row(): + audio_output_format = gr.Radio(label=translations["export_format"], info=translations["export_info"], choices=["wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3"], value="wav", interactive=True) + with gr.Row(): + apply_effects_button = gr.Button(translations["apply"], variant="primary", scale=2) + with gr.Row(): + with gr.Column(): + with gr.Row(): + with gr.Accordion(translations["reverb"], open=False, visible=reverb_check_box.value) as reverb_accordion: + reverb_freeze_mode = gr.Checkbox(label=translations["reverb_freeze"], info=translations["reverb_freeze_info"], value=False, interactive=True) + reverb_room_size = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.15, label=translations["room_size"], info=translations["room_size_info"], interactive=True) + reverb_damping = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.7, label=translations["damping"], info=translations["damping_info"], interactive=True) + reverb_wet_level = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.2, label=translations["wet_level"], info=translations["wet_level_info"], interactive=True) + reverb_dry_level = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.8, label=translations["dry_level"], info=translations["dry_level_info"], interactive=True) + reverb_width = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label=translations["width"], info=translations["width_info"], interactive=True) + with gr.Row(): + with gr.Accordion(translations["chorus"], open=False, visible=chorus_check_box.value) as chorus_accordion: + chorus_depth = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.5, label=translations["chorus_depth"], info=translations["chorus_depth_info"], interactive=True) + chorus_rate_hz = gr.Slider(minimum=0.1, maximum=10, step=0.1, value=1.5, label=translations["chorus_rate_hz"], info=translations["chorus_rate_hz_info"], interactive=True) + chorus_mix = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.5, label=translations["chorus_mix"], info=translations["chorus_mix_info"], interactive=True) + chorus_centre_delay_ms = gr.Slider(minimum=0, maximum=50, step=1, value=10, label=translations["chorus_centre_delay_ms"], info=translations["chorus_centre_delay_ms_info"], interactive=True) + chorus_feedback = gr.Slider(minimum=-1, maximum=1, step=0.01, value=0, label=translations["chorus_feedback"], info=translations["chorus_feedback_info"], interactive=True) + with gr.Row(): + with gr.Accordion(translations["delay"], open=False, visible=delay_check_box.value) as delay_accordion: + delay_second = gr.Slider(minimum=0, maximum=5, step=0.01, value=0.5, label=translations["delay_seconds"], info=translations["delay_seconds_info"], interactive=True) + delay_feedback = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.5, label=translations["delay_feedback"], info=translations["delay_feedback_info"], interactive=True) + delay_mix = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.5, label=translations["delay_mix"], info=translations["delay_mix_info"], interactive=True) + with gr.Column(): + with gr.Row(): + with gr.Accordion(translations["more_option"], open=False, visible=more_options.value) as more_accordion: + with gr.Row(): + fade = gr.Checkbox(label=translations["fade"], value=False, interactive=True) + bass_or_treble = gr.Checkbox(label=translations["bass_or_treble"], value=False, interactive=True) + limiter = gr.Checkbox(label=translations["limiter"], value=False, interactive=True) + resample_checkbox = gr.Checkbox(label=translations["resample"], value=False, interactive=True) + with gr.Row(): + distortion_checkbox = gr.Checkbox(label=translations["distortion"], value=False, interactive=True) + gain_checkbox = gr.Checkbox(label=translations["gain"], value=False, interactive=True) + bitcrush_checkbox = gr.Checkbox(label=translations["bitcrush"], value=False, interactive=True) + clipping_checkbox = gr.Checkbox(label=translations["clipping"], value=False, interactive=True) + with gr.Accordion(translations["fade"], open=True, visible=fade.value) as fade_accordion: + with gr.Row(): + fade_in = gr.Slider(minimum=0, maximum=10000, step=100, value=0, label=translations["fade_in"], info=translations["fade_in_info"], interactive=True) + fade_out = gr.Slider(minimum=0, maximum=10000, step=100, value=0, label=translations["fade_out"], info=translations["fade_out_info"], interactive=True) + with gr.Accordion(translations["bass_or_treble"], open=True, visible=bass_or_treble.value) as bass_treble_accordion: + with gr.Row(): + bass_boost = gr.Slider(minimum=0, maximum=20, step=1, value=0, label=translations["bass_boost"], info=translations["bass_boost_info"], interactive=True) + bass_frequency = gr.Slider(minimum=20, maximum=200, step=10, value=100, label=translations["bass_frequency"], info=translations["bass_frequency_info"], interactive=True) + with gr.Row(): + treble_boost = gr.Slider(minimum=0, maximum=20, step=1, value=0, label=translations["treble_boost"], info=translations["treble_boost_info"], interactive=True) + treble_frequency = gr.Slider(minimum=1000, maximum=10000, step=500, value=3000, label=translations["treble_frequency"], info=translations["treble_frequency_info"], interactive=True) + with gr.Accordion(translations["limiter"], open=True, visible=limiter.value) as limiter_accordion: + with gr.Row(): + limiter_threashold_db = gr.Slider(minimum=-60, maximum=0, step=1, value=-1, label=translations["limiter_threashold_db"], info=translations["limiter_threashold_db_info"], interactive=True) + limiter_release_ms = gr.Slider(minimum=10, maximum=1000, step=1, value=100, label=translations["limiter_release_ms"], info=translations["limiter_release_ms_info"], interactive=True) + with gr.Column(): + pitch_shift_semitones = gr.Slider(minimum=-20, maximum=20, step=1, value=0, label=translations["pitch"], info=translations["pitch_info"], interactive=True) + audio_effect_resample_sr = gr.Slider(minimum=0, maximum=96000, step=1, value=0, label=translations["resample"], info=translations["resample_info"], interactive=True, visible=resample_checkbox.value) + distortion_drive_db = gr.Slider(minimum=0, maximum=50, step=1, value=20, label=translations["distortion"], info=translations["distortion_info"], interactive=True, visible=distortion_checkbox.value) + gain_db = gr.Slider(minimum=-60, maximum=60, step=1, value=0, label=translations["gain"], info=translations["gain_info"], interactive=True, visible=gain_checkbox.value) + clipping_threashold_db = gr.Slider(minimum=-60, maximum=0, step=1, value=-1, label=translations["clipping_threashold_db"], info=translations["clipping_threashold_db_info"], interactive=True, visible=clipping_checkbox.value) + bitcrush_bit_depth = gr.Slider(minimum=1, maximum=24, step=1, value=16, label=translations["bitcrush_bit_depth"], info=translations["bitcrush_bit_depth_info"], interactive=True, visible=bitcrush_checkbox.value) + with gr.Row(): + with gr.Accordion(translations["phaser"], open=False, visible=phaser_check_box.value) as phaser_accordion: + phaser_depth = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.5, label=translations["phaser_depth"], info=translations["phaser_depth_info"], interactive=True) + phaser_rate_hz = gr.Slider(minimum=0.1, maximum=10, step=0.1, value=1, label=translations["phaser_rate_hz"], info=translations["phaser_rate_hz_info"], interactive=True) + phaser_mix = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.5, label=translations["phaser_mix"], info=translations["phaser_mix_info"], interactive=True) + phaser_centre_frequency_hz = gr.Slider(minimum=50, maximum=5000, step=10, value=1000, label=translations["phaser_centre_frequency_hz"], info=translations["phaser_centre_frequency_hz_info"], interactive=True) + phaser_feedback = gr.Slider(minimum=-1, maximum=1, step=0.01, value=0, label=translations["phaser_feedback"], info=translations["phaser_feedback_info"], interactive=True) + with gr.Row(): + with gr.Accordion(translations["compressor"], open=False, visible=compressor_check_box.value) as compressor_accordion: + compressor_threashold_db = gr.Slider(minimum=-60, maximum=0, step=1, value=-20, label=translations["compressor_threashold_db"], info=translations["compressor_threashold_db_info"], interactive=True) + compressor_ratio = gr.Slider(minimum=1, maximum=20, step=0.1, value=1, label=translations["compressor_ratio"], info=translations["compressor_ratio_info"], interactive=True) + compressor_attack_ms = gr.Slider(minimum=0.1, maximum=100, step=0.1, value=10, label=translations["compressor_attack_ms"], info=translations["compressor_attack_ms_info"], interactive=True) + compressor_release_ms = gr.Slider(minimum=10, maximum=1000, step=1, value=100, label=translations["compressor_release_ms"], info=translations["compressor_release_ms_info"], interactive=True) + with gr.Row(): + gr.Markdown(translations["output_audio"]) + with gr.Row(): + audio_play_input = gr.Audio(show_download_button=True, interactive=False, label=translations["input_audio"]) + audio_play_output = gr.Audio(show_download_button=True, interactive=False, label=translations["output_audio"]) + with gr.Row(): + reverb_check_box.change(fn=visible, inputs=[reverb_check_box], outputs=[reverb_accordion]) + chorus_check_box.change(fn=visible, inputs=[chorus_check_box], outputs=[chorus_accordion]) + delay_check_box.change(fn=visible, inputs=[delay_check_box], outputs=[delay_accordion]) + with gr.Row(): + compressor_check_box.change(fn=visible, inputs=[compressor_check_box], outputs=[compressor_accordion]) + phaser_check_box.change(fn=visible, inputs=[phaser_check_box], outputs=[phaser_accordion]) + more_options.change(fn=visible, inputs=[more_options], outputs=[more_accordion]) + with gr.Row(): + fade.change(fn=visible, inputs=[fade], outputs=[fade_accordion]) + bass_or_treble.change(fn=visible, inputs=[bass_or_treble], outputs=[bass_treble_accordion]) + limiter.change(fn=visible, inputs=[limiter], outputs=[limiter_accordion]) + resample_checkbox.change(fn=visible, inputs=[resample_checkbox], outputs=[audio_effect_resample_sr]) + with gr.Row(): + distortion_checkbox.change(fn=visible, inputs=[distortion_checkbox], outputs=[distortion_drive_db]) + gain_checkbox.change(fn=visible, inputs=[gain_checkbox], outputs=[gain_db]) + clipping_checkbox.change(fn=visible, inputs=[clipping_checkbox], outputs=[clipping_threashold_db]) + bitcrush_checkbox.change(fn=visible, inputs=[bitcrush_checkbox], outputs=[bitcrush_bit_depth]) + with gr.Row(): + upload_audio.upload(fn=lambda audio_in: shutil.move(audio_in.name, os.path.join("audios")), inputs=[upload_audio], outputs=[audio_in_path]) + audio_in_path.change(fn=lambda audio: audio if audio else None, inputs=[audio_in_path], outputs=[audio_play_input]) + audio_effects_refesh.click(fn=lambda a, b: [change_audios_choices(a), change_audios_choices(b)], inputs=[audio_in_path, audio_combination_input], outputs=[audio_in_path, audio_combination_input]) + with gr.Row(): + more_options.change(fn=lambda: [False]*8, inputs=[], outputs=[fade, bass_or_treble, limiter, resample_checkbox, distortion_checkbox, gain_checkbox, clipping_checkbox, bitcrush_checkbox]) + audio_combination.change(fn=visible, inputs=[audio_combination], outputs=[audio_combination_input]) + with gr.Row(): + apply_effects_button.click( + fn=audio_effects, + inputs=[ + audio_in_path, + audio_out_path, + resample_checkbox, + audio_effect_resample_sr, + chorus_depth, + chorus_rate_hz, + chorus_mix, + chorus_centre_delay_ms, + chorus_feedback, + distortion_drive_db, + reverb_room_size, + reverb_damping, + reverb_wet_level, + reverb_dry_level, + reverb_width, + reverb_freeze_mode, + pitch_shift_semitones, + delay_second, + delay_feedback, + delay_mix, + compressor_threashold_db, + compressor_ratio, + compressor_attack_ms, + compressor_release_ms, + limiter_threashold_db, + limiter_release_ms, + gain_db, + bitcrush_bit_depth, + clipping_threashold_db, + phaser_rate_hz, + phaser_depth, + phaser_centre_frequency_hz, + phaser_feedback, + phaser_mix, + bass_boost, + bass_frequency, + treble_boost, + treble_frequency, + fade_in, + fade_out, + audio_output_format, + chorus_check_box, + distortion_checkbox, + reverb_check_box, + delay_check_box, + compressor_check_box, + limiter, + gain_checkbox, + bitcrush_checkbox, + clipping_checkbox, + phaser_check_box, + bass_or_treble, + fade, + audio_combination, + audio_combination_input + ], + outputs=[audio_play_output], + api_name="audio_effects" + ) + + with gr.TabItem(translations["createdataset"], visible=configs.get("create_dataset_tab", True)): + gr.Markdown(translations["create_dataset_markdown"]) + with gr.Row(): + gr.Markdown(translations["create_dataset_markdown_2"]) + with gr.Row(): + dataset_url = gr.Textbox(label=translations["url_audio"], info=translations["create_dataset_url"], value="", placeholder="https://www.youtube.com/...", interactive=True) + output_dataset = gr.Textbox(label=translations["output_data"], info=translations["output_data_info"], value="dataset", placeholder="dataset", interactive=True) + with gr.Row(): + with gr.Column(): + with gr.Group(): + with gr.Row(): + separator_reverb = gr.Checkbox(label=translations["dereveb_audio"], value=False, interactive=True) + denoise_mdx = gr.Checkbox(label=translations["denoise"], value=False, interactive=True) + with gr.Row(): + kim_vocal_version = gr.Radio(label=translations["model_ver"], info=translations["model_ver_info"], choices=["Version-1", "Version-2"], value="Version-2", interactive=True) + kim_vocal_overlap = gr.Radio(label=translations["overlap"], info=translations["overlap_info"], choices=["0.25", "0.5", "0.75", "0.99"], value="0.25", interactive=True) + with gr.Row(): + kim_vocal_hop_length = gr.Slider(label="Hop length", info=translations["hop_length_info"], minimum=1, maximum=8192, value=1024, step=1, interactive=True) + kim_vocal_batch_size = gr.Slider(label=translations["batch_size"], info=translations["mdx_batch_size_info"], minimum=1, maximum=64, value=1, step=1, interactive=True) + with gr.Row(): + kim_vocal_segments_size = gr.Slider(label=translations["segments_size"], info=translations["segments_size_info"], minimum=32, maximum=3072, value=256, step=32, interactive=True) + with gr.Row(): + sample_rate0 = gr.Slider(minimum=8000, maximum=96000, step=1, value=44100, label=translations["sr"], info=translations["sr_info"], interactive=True) + with gr.Column(): + create_button = gr.Button(translations["createdataset"], variant="primary", scale=2, min_width=4000) + with gr.Group(): + with gr.Row(): + clean_audio = gr.Checkbox(label=translations["clear_audio"], value=False, interactive=True) + skip = gr.Checkbox(label=translations["skip"], value=False, interactive=True) + with gr.Row(): + dataset_clean_strength = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.5, label=translations["clean_strength"], info=translations["clean_strength_info"], interactive=True, visible=clean_audio.value) + with gr.Row(): + skip_start = gr.Textbox(label=translations["skip_start"], info=translations["skip_start_info"], value="", placeholder="0,...", interactive=True, visible=skip.value) + skip_end = gr.Textbox(label=translations["skip_end"], info=translations["skip_end_info"], value="", placeholder="0,...", interactive=True, visible=skip.value) + create_dataset_info = gr.Textbox(label=translations["create_dataset_info"], value="", interactive=False) + with gr.Row(): + clean_audio.change(fn=visible, inputs=[clean_audio], outputs=[dataset_clean_strength]) + skip.change(fn=lambda a: [valueEmpty_visible1(a)]*2, inputs=[skip], outputs=[skip_start, skip_end]) + with gr.Row(): + create_button.click( + fn=create_dataset, + inputs=[ + dataset_url, + output_dataset, + clean_audio, + dataset_clean_strength, + separator_reverb, + kim_vocal_version, + kim_vocal_overlap, + kim_vocal_segments_size, + denoise_mdx, + skip, + skip_start, + skip_end, + kim_vocal_hop_length, + kim_vocal_batch_size, + sample_rate0 + ], + outputs=[create_dataset_info], + api_name="create_dataset" + ) + + with gr.TabItem(translations["training_model"], visible=configs.get("training_tab", True)): + gr.Markdown(f"## {translations['training_model']}") + with gr.Row(): + gr.Markdown(translations["training_markdown"]) + with gr.Row(): + with gr.Column(): + with gr.Row(): + with gr.Column(): + training_name = gr.Textbox(label=translations["modelname"], info=translations["training_model_name"], value="", placeholder=translations["modelname"], interactive=True) + training_sr = gr.Radio(label=translations["sample_rate"], info=translations["sample_rate_info"], choices=["32k", "40k", "48k"], value="48k", interactive=True) + training_ver = gr.Radio(label=translations["training_version"], info=translations["training_version_info"], choices=["v1", "v2"], value="v2", interactive=True) + with gr.Row(): + clean_dataset = gr.Checkbox(label=translations["clear_dataset"], value=False, interactive=True) + preprocess_cut = gr.Checkbox(label=translations["split_audio"], value=True, interactive=True) + process_effects = gr.Checkbox(label=translations["preprocess_effect"], value=False, interactive=True) + checkpointing1 = gr.Checkbox(label=translations["memory_efficient_training"], value=False, interactive=True) + training_f0 = gr.Checkbox(label=translations["training_pitch"], value=True, interactive=True) + upload = gr.Checkbox(label=translations["upload_dataset"], value=False, interactive=True) + with gr.Row(): + clean_dataset_strength = gr.Slider(label=translations["clean_strength"], info=translations["clean_strength_info"], minimum=0, maximum=1, value=0.7, step=0.1, interactive=True, visible=clean_dataset.value) + with gr.Column(): + preprocess_button = gr.Button(translations["preprocess_button"], scale=2) + upload_dataset = gr.Files(label=translations["drop_audio"], file_types=[".wav", ".mp3", ".flac", ".ogg", ".opus", ".m4a", ".mp4", ".aac", ".alac", ".wma", ".aiff", ".webm", ".ac3"], visible=upload.value) + preprocess_info = gr.Textbox(label=translations["preprocess_info"], value="", interactive=False) + with gr.Column(): + with gr.Row(): + with gr.Column(): + with gr.Accordion(label=translations["f0_method"], open=False): + with gr.Group(): + with gr.Row(): + onnx_f0_mode2 = gr.Checkbox(label=translations["f0_onnx_mode"], info=translations["f0_onnx_mode_info"], value=False, interactive=True) + unlock_full_method4 = gr.Checkbox(label=translations["f0_unlock"], info=translations["f0_unlock_info"], value=False, interactive=True) + extract_method = gr.Radio(label=translations["f0_method"], info=translations["f0_method_info"], choices=method_f0, value="rmvpe", interactive=True) + extract_hop_length = gr.Slider(label="Hop length", info=translations["hop_length_info"], minimum=1, maximum=512, value=128, step=1, interactive=True, visible=False) + with gr.Accordion(label=translations["hubert_model"], open=False): + with gr.Group(): + embed_mode2 = gr.Radio(label=translations["embed_mode"], info=translations["embed_mode_info"], value="fairseq", choices=embedders_mode, interactive=True, visible=True) + extract_embedders = gr.Radio(label=translations["hubert_model"], info=translations["hubert_info"], choices=embedders_model, value="hubert_base", interactive=True) + with gr.Row(): + extract_embedders_custom = gr.Textbox(label=translations["modelname"], info=translations["modelname_info"], value="", placeholder="hubert_base", interactive=True, visible=extract_embedders.value == "custom") + with gr.Column(): + extract_button = gr.Button(translations["extract_button"], scale=2) + extract_info = gr.Textbox(label=translations["extract_info"], value="", interactive=False) + with gr.Column(): + with gr.Row(): + with gr.Column(): + total_epochs = gr.Slider(label=translations["total_epoch"], info=translations["total_epoch_info"], minimum=1, maximum=10000, value=300, step=1, interactive=True) + save_epochs = gr.Slider(label=translations["save_epoch"], info=translations["save_epoch_info"], minimum=1, maximum=10000, value=50, step=1, interactive=True) + with gr.Column(): + with gr.Row(): + index_button = gr.Button(f"3. {translations['create_index']}", variant="primary", scale=2) + training_button = gr.Button(f"4. {translations['training_model']}", variant="primary", scale=2) + with gr.Row(): + with gr.Accordion(label=translations["setting"], open=False): + with gr.Row(): + index_algorithm = gr.Radio(label=translations["index_algorithm"], info=translations["index_algorithm_info"], choices=["Auto", "Faiss", "KMeans"], value="Auto", interactive=True) + with gr.Row(): + custom_dataset = gr.Checkbox(label=translations["custom_dataset"], info=translations["custom_dataset_info"], value=False, interactive=True) + overtraining_detector = gr.Checkbox(label=translations["overtraining_detector"], info=translations["overtraining_detector_info"], value=False, interactive=True) + clean_up = gr.Checkbox(label=translations["cleanup_training"], info=translations["cleanup_training_info"], value=False, interactive=True) + cache_in_gpu = gr.Checkbox(label=translations["cache_in_gpu"], info=translations["cache_in_gpu_info"], value=False, interactive=True) + with gr.Column(): + dataset_path = gr.Textbox(label=translations["dataset_folder"], value="dataset", interactive=True, visible=custom_dataset.value) + with gr.Column(): + threshold = gr.Slider(minimum=1, maximum=100, value=50, step=1, label=translations["threshold"], interactive=True, visible=overtraining_detector.value) + with gr.Accordion(translations["setting_cpu_gpu"], open=False): + with gr.Column(): + gpu_number = gr.Textbox(label=translations["gpu_number"], value=str("-".join(map(str, range(torch.cuda.device_count()))) if torch.cuda.is_available() else "-"), info=translations["gpu_number_info"], interactive=True) + gpu_info = gr.Textbox(label=translations["gpu_info"], value=get_gpu_info(), info=translations["gpu_info_2"], interactive=False) + cpu_core = gr.Slider(label=translations["cpu_core"], info=translations["cpu_core_info"], minimum=0, maximum=cpu_count(), value=cpu_count(), step=1, interactive=True) + train_batch_size = gr.Slider(label=translations["batch_size"], info=translations["batch_size_info"], minimum=1, maximum=64, value=8, step=1, interactive=True) + with gr.Row(): + save_only_latest = gr.Checkbox(label=translations["save_only_latest"], info=translations["save_only_latest_info"], value=True, interactive=True) + save_every_weights = gr.Checkbox(label=translations["save_every_weights"], info=translations["save_every_weights_info"], value=True, interactive=True) + not_use_pretrain = gr.Checkbox(label=translations["not_use_pretrain_2"], info=translations["not_use_pretrain_info"], value=False, interactive=True) + custom_pretrain = gr.Checkbox(label=translations["custom_pretrain"], info=translations["custom_pretrain_info"], value=False, interactive=True) + with gr.Row(): + vocoders = gr.Radio(label=translations["vocoder"], info=translations["vocoder_info"], choices=["Default", "MRF-HiFi-GAN", "RefineGAN"], value="Default", interactive=True) + with gr.Row(): + deterministic = gr.Checkbox(label=translations["deterministic"], info=translations["deterministic_info"], value=False, interactive=True) + benchmark = gr.Checkbox(label=translations["benchmark"], info=translations["benchmark_info"], value=False, interactive=True) + with gr.Row(): + model_author = gr.Textbox(label=translations["training_author"], info=translations["training_author_info"], value="", placeholder=translations["training_author"], interactive=True) + with gr.Row(): + with gr.Column(): + with gr.Accordion(translations["custom_pretrain_info"], open=False, visible=custom_pretrain.value and not not_use_pretrain.value) as pretrain_setting: + pretrained_D = gr.Dropdown(label=translations["pretrain_file"].format(dg="D"), choices=pretrainedD, value=pretrainedD[0] if len(pretrainedD) > 0 else '', interactive=True, allow_custom_value=True) + pretrained_G = gr.Dropdown(label=translations["pretrain_file"].format(dg="G"), choices=pretrainedG, value=pretrainedG[0] if len(pretrainedG) > 0 else '', interactive=True, allow_custom_value=True) + refesh_pretrain = gr.Button(translations["refesh"], scale=2) + with gr.Row(): + training_info = gr.Textbox(label=translations["train_info"], value="", interactive=False) + with gr.Row(): + with gr.Column(): + with gr.Accordion(translations["export_model"], open=False): + with gr.Row(): + model_file= gr.Dropdown(label=translations["model_name"], choices=model_name, value=model_name[0] if len(model_name) >= 1 else "", interactive=True, allow_custom_value=True) + index_file = gr.Dropdown(label=translations["index_path"], choices=index_path, value=index_path[0] if len(index_path) >= 1 else "", interactive=True, allow_custom_value=True) + with gr.Row(): + refesh_file = gr.Button(f"1. {translations['refesh']}", scale=2) + zip_model = gr.Button(translations["zip_model"], variant="primary", scale=2) + with gr.Row(): + zip_output = gr.File(label=translations["output_zip"], file_types=[".zip"], interactive=False, visible=False) + with gr.Row(): + vocoders.change(fn=pitch_guidance_lock, inputs=[vocoders], outputs=[training_f0]) + training_f0.change(fn=vocoders_lock, inputs=[training_f0, vocoders], outputs=[vocoders]) + unlock_full_method4.change(fn=unlock_f0, inputs=[unlock_full_method4], outputs=[extract_method]) + with gr.Row(): + refesh_file.click(fn=change_models_choices, inputs=[], outputs=[model_file, index_file]) + zip_model.click(fn=zip_file, inputs=[training_name, model_file, index_file], outputs=[zip_output]) + dataset_path.change(fn=lambda folder: os.makedirs(folder, exist_ok=True), inputs=[dataset_path], outputs=[]) + with gr.Row(): + upload.change(fn=visible, inputs=[upload], outputs=[upload_dataset]) + overtraining_detector.change(fn=visible, inputs=[overtraining_detector], outputs=[threshold]) + clean_dataset.change(fn=visible, inputs=[clean_dataset], outputs=[clean_dataset_strength]) + with gr.Row(): + custom_dataset.change(fn=lambda custom_dataset: [visible(custom_dataset), "dataset"],inputs=[custom_dataset], outputs=[dataset_path, dataset_path]) + training_ver.change(fn=unlock_vocoder, inputs=[training_ver, vocoders], outputs=[vocoders]) + vocoders.change(fn=unlock_ver, inputs=[training_ver, vocoders], outputs=[training_ver]) + upload_dataset.upload( + fn=lambda files, folder: [shutil.move(f.name, os.path.join(folder, os.path.split(f.name)[1])) for f in files] if folder != "" else gr_warning(translations["dataset_folder1"]), + inputs=[upload_dataset, dataset_path], + outputs=[], + api_name="upload_dataset" + ) + with gr.Row(): + not_use_pretrain.change(fn=lambda a, b: visible(a and not b), inputs=[custom_pretrain, not_use_pretrain], outputs=[pretrain_setting]) + custom_pretrain.change(fn=lambda a, b: visible(a and not b), inputs=[custom_pretrain, not_use_pretrain], outputs=[pretrain_setting]) + refesh_pretrain.click(fn=change_pretrained_choices, inputs=[], outputs=[pretrained_D, pretrained_G]) + with gr.Row(): + preprocess_button.click( + fn=preprocess, + inputs=[ + training_name, + training_sr, + cpu_core, + preprocess_cut, + process_effects, + dataset_path, + clean_dataset, + clean_dataset_strength + ], + outputs=[preprocess_info], + api_name="preprocess" + ) + with gr.Row(): + embed_mode2.change(fn=visible_embedders, inputs=[embed_mode2], outputs=[extract_embedders]) + extract_method.change(fn=hoplength_show, inputs=[extract_method], outputs=[extract_hop_length]) + extract_embedders.change(fn=lambda extract_embedders: visible(extract_embedders == "custom"), inputs=[extract_embedders], outputs=[extract_embedders_custom]) + with gr.Row(): + extract_button.click( + fn=extract, + inputs=[ + training_name, + training_ver, + extract_method, + training_f0, + extract_hop_length, + cpu_core, + gpu_number, + training_sr, + extract_embedders, + extract_embedders_custom, + onnx_f0_mode2, + embed_mode2 + ], + outputs=[extract_info], + api_name="extract" + ) + with gr.Row(): + index_button.click( + fn=create_index, + inputs=[ + training_name, + training_ver, + index_algorithm + ], + outputs=[training_info], + api_name="create_index" + ) + with gr.Row(): + training_button.click( + fn=training, + inputs=[ + training_name, + training_ver, + save_epochs, + save_only_latest, + save_every_weights, + total_epochs, + training_sr, + train_batch_size, + gpu_number, + training_f0, + not_use_pretrain, + custom_pretrain, + pretrained_G, + pretrained_D, + overtraining_detector, + threshold, + clean_up, + cache_in_gpu, + model_author, + vocoders, + checkpointing1, + deterministic, + benchmark + ], + outputs=[training_info], + api_name="training_model" + ) + + with gr.TabItem(translations["fushion"], visible=configs.get("fushion_tab", True)): + gr.Markdown(translations["fushion_markdown"]) + with gr.Row(): + gr.Markdown(translations["fushion_markdown_2"]) + with gr.Row(): + name_to_save = gr.Textbox(label=translations["modelname"], placeholder="Model.pth", value="", max_lines=1, interactive=True) + with gr.Row(): + fushion_button = gr.Button(translations["fushion"], variant="primary", scale=4) + with gr.Column(): + with gr.Row(): + model_a = gr.File(label=f"{translations['model_name']} 1", file_types=[".pth", ".onnx"]) + model_b = gr.File(label=f"{translations['model_name']} 2", file_types=[".pth", ".onnx"]) + with gr.Row(): + model_path_a = gr.Textbox(label=f"{translations['model_path']} 1", value="", placeholder="assets/weights/Model_1.pth") + model_path_b = gr.Textbox(label=f"{translations['model_path']} 2", value="", placeholder="assets/weights/Model_2.pth") + with gr.Row(): + ratio = gr.Slider(minimum=0, maximum=1, label=translations["model_ratio"], info=translations["model_ratio_info"], value=0.5, interactive=True) + with gr.Row(): + output_model = gr.File(label=translations["output_model_path"], file_types=[".pth", ".onnx"], interactive=False, visible=False) + with gr.Row(): + model_a.upload(fn=lambda model: shutil.move(model.name, os.path.join("assets", "weights")), inputs=[model_a], outputs=[model_path_a]) + model_b.upload(fn=lambda model: shutil.move(model.name, os.path.join("assets", "weights")), inputs=[model_b], outputs=[model_path_b]) + with gr.Row(): + fushion_button.click( + fn=fushion_model, + inputs=[ + name_to_save, + model_path_a, + model_path_b, + ratio + ], + outputs=[name_to_save, output_model], + api_name="fushion_model" + ) + fushion_button.click(fn=lambda: visible(True), inputs=[], outputs=[output_model]) + + with gr.TabItem(translations["read_model"], visible=configs.get("read_tab", True)): + gr.Markdown(translations["read_model_markdown"]) + with gr.Row(): + gr.Markdown(translations["read_model_markdown_2"]) + with gr.Row(): + model = gr.File(label=translations["drop_model"], file_types=[".pth", ".onnx"]) + with gr.Row(): + read_button = gr.Button(translations["readmodel"], variant="primary", scale=2) + with gr.Column(): + model_path = gr.Textbox(label=translations["model_path"], value="", placeholder="assets/weights/Model.pth", info=translations["model_path_info"], interactive=True) + output_info = gr.Textbox(label=translations["modelinfo"], value="", interactive=False, scale=6) + with gr.Row(): + model.upload(fn=lambda model: shutil.move(model.name, os.path.join("assets", "weights")), inputs=[model], outputs=[model_path]) + read_button.click( + fn=model_info, + inputs=[model_path], + outputs=[output_info], + api_name="read_model" + ) + + with gr.TabItem(translations["convert_model"], visible=configs.get("onnx_tab", True)): + gr.Markdown(translations["pytorch2onnx"]) + with gr.Row(): + gr.Markdown(translations["pytorch2onnx_markdown"]) + with gr.Row(): + model_pth_upload = gr.File(label=translations["drop_model"], file_types=[".pth"]) + with gr.Row(): + convert_onnx = gr.Button(translations["convert_model"], variant="primary", scale=2) + with gr.Row(): + model_pth_path = gr.Textbox(label=translations["model_path"], value="", placeholder="assets/weights/Model.pth", info=translations["model_path_info"], interactive=True) + with gr.Row(): + output_model2 = gr.File(label=translations["output_model_path"], file_types=[".pth", ".onnx"], interactive=False, visible=False) + with gr.Row(): + model_pth_upload.upload(fn=lambda model_pth_upload: shutil.move(model_pth_upload.name, os.path.join("assets", "weights")), inputs=[model_pth_upload], outputs=[model_pth_path]) + convert_onnx.click( + fn=onnx_export, + inputs=[model_pth_path], + outputs=[output_model2, output_info], + api_name="model_onnx_export" + ) + convert_onnx.click(fn=lambda: visible(True), inputs=[], outputs=[output_model2]) + + with gr.TabItem(translations["downloads"], visible=configs.get("downloads_tab", True)): + gr.Markdown(translations["download_markdown"]) + with gr.Row(): + gr.Markdown(translations["download_markdown_2"]) + with gr.Row(): + with gr.Accordion(translations["model_download"], open=True): + with gr.Row(): + downloadmodel = gr.Radio(label=translations["model_download_select"], choices=[translations["download_url"], translations["download_from_csv"], translations["search_models"], translations["upload"]], interactive=True, value=translations["download_url"]) + with gr.Row(): + gr.Markdown("___") + with gr.Column(): + with gr.Row(): + url_input = gr.Textbox(label=translations["model_url"], value="", placeholder="https://...", scale=6) + download_model_name = gr.Textbox(label=translations["modelname"], value="", placeholder=translations["modelname"], scale=2) + url_download = gr.Button(value=translations["downloads"], scale=2) + with gr.Column(): + model_browser = gr.Dropdown(choices=models.keys(), label=translations["model_warehouse"], scale=8, allow_custom_value=True, visible=False) + download_from_browser = gr.Button(value=translations["get_model"], scale=2, variant="primary", visible=False) + with gr.Column(): + search_name = gr.Textbox(label=translations["name_to_search"], placeholder=translations["modelname"], interactive=True, scale=8, visible=False) + search = gr.Button(translations["search_2"], scale=2, visible=False) + search_dropdown = gr.Dropdown(label=translations["select_download_model"], value="", choices=[], allow_custom_value=True, interactive=False, visible=False) + download = gr.Button(translations["downloads"], variant="primary", visible=False) + with gr.Column(): + model_upload = gr.File(label=translations["drop_model"], file_types=[".pth", ".onnx", ".index", ".zip"], visible=False) + with gr.Row(): + with gr.Accordion(translations["download_pretrained_2"], open=False): + with gr.Row(): + pretrain_download_choices = gr.Radio(label=translations["model_download_select"], choices=[translations["download_url"], translations["list_model"], translations["upload"]], value=translations["download_url"], interactive=True) + with gr.Row(): + gr.Markdown("___") + with gr.Column(): + with gr.Row(): + pretrainD = gr.Textbox(label=translations["pretrained_url"].format(dg="D"), value="", info=translations["only_huggingface"], placeholder="https://...", interactive=True, scale=4) + pretrainG = gr.Textbox(label=translations["pretrained_url"].format(dg="G"), value="", info=translations["only_huggingface"], placeholder="https://...", interactive=True, scale=4) + download_pretrain_button = gr.Button(translations["downloads"], scale=2) + with gr.Column(): + with gr.Row(): + pretrain_choices = gr.Dropdown(label=translations["select_pretrain"], info=translations["select_pretrain_info"], choices=list(fetch_pretrained_data().keys()), value="Titan_Medium", allow_custom_value=True, interactive=True, scale=6, visible=False) + sample_rate_pretrain = gr.Dropdown(label=translations["pretrain_sr"], info=translations["pretrain_sr"], choices=["48k", "40k", "32k"], value="48k", interactive=True, visible=False) + download_pretrain_choices_button = gr.Button(translations["downloads"], scale=2, variant="primary", visible=False) + with gr.Row(): + pretrain_upload_g = gr.File(label=translations["drop_pretrain"].format(dg="G"), file_types=[".pth"], visible=False) + pretrain_upload_d = gr.File(label=translations["drop_pretrain"].format(dg="D"), file_types=[".pth"], visible=False) + with gr.Row(): + url_download.click( + fn=download_model, + inputs=[ + url_input, + download_model_name + ], + outputs=[url_input], + api_name="download_model" + ) + download_from_browser.click( + fn=lambda model: download_model(models[model], model), + inputs=[model_browser], + outputs=[model_browser], + api_name="download_browser" + ) + with gr.Row(): + downloadmodel.change(fn=change_download_choices, inputs=[downloadmodel], outputs=[url_input, download_model_name, url_download, model_browser, download_from_browser, search_name, search, search_dropdown, download, model_upload]) + search.click(fn=search_models, inputs=[search_name], outputs=[search_dropdown, download]) + model_upload.upload(fn=save_drop_model, inputs=[model_upload], outputs=[model_upload]) + download.click( + fn=lambda model: download_model(model_options[model], model), + inputs=[search_dropdown], + outputs=[search_dropdown], + api_name="search_models" + ) + with gr.Row(): + pretrain_download_choices.change(fn=change_download_pretrained_choices, inputs=[pretrain_download_choices], outputs=[pretrainD, pretrainG, download_pretrain_button, pretrain_choices, sample_rate_pretrain, download_pretrain_choices_button, pretrain_upload_d, pretrain_upload_g]) + pretrain_choices.change(fn=update_sample_rate_dropdown, inputs=[pretrain_choices], outputs=[sample_rate_pretrain]) + with gr.Row(): + download_pretrain_button.click( + fn=download_pretrained_model, + inputs=[ + pretrain_download_choices, + pretrainD, + pretrainG + ], + outputs=[pretrainD], + api_name="download_pretrain_link" + ) + download_pretrain_choices_button.click( + fn=download_pretrained_model, + inputs=[ + pretrain_download_choices, + pretrain_choices, + sample_rate_pretrain + ], + outputs=[pretrain_choices], + api_name="download_pretrain_choices" + ) + pretrain_upload_g.upload( + fn=lambda pretrain_upload_g: shutil.move(pretrain_upload_g.name, os.path.join("assets", "models", "pretrained_custom")), + inputs=[pretrain_upload_g], + outputs=[], + api_name="upload_pretrain_g" + ) + pretrain_upload_d.upload( + fn=lambda pretrain_upload_d: shutil.move(pretrain_upload_d.name, os.path.join("assets", "models", "pretrained_custom")), + inputs=[pretrain_upload_d], + outputs=[], + api_name="upload_pretrain_d" + ) + + with gr.TabItem(translations["f0_extractor_tab"], visible=configs.get("f0_extractor_tab", True)): + gr.Markdown(translations["f0_extractor_markdown"]) + with gr.Row(): + gr.Markdown(translations["f0_extractor_markdown_2"]) + with gr.Row(): + extractor_button = gr.Button(translations["extract_button"].replace("2. ", ""), variant="primary") + with gr.Row(): + with gr.Column(): + upload_audio_file = gr.File(label=translations["drop_audio"], file_types=[".wav", ".mp3", ".flac", ".ogg", ".opus", ".m4a", ".mp4", ".aac", ".alac", ".wma", ".aiff", ".webm", ".ac3"]) + audioplay = gr.Audio(show_download_button=True, interactive=False, label=translations["input_audio"]) + with gr.Column(): + with gr.Accordion(translations["f0_method"], open=False): + with gr.Group(): + onnx_f0_mode3 = gr.Checkbox(label=translations["f0_onnx_mode"], info=translations["f0_onnx_mode_info"], value=False, interactive=True) + f0_method_extract = gr.Radio(label=translations["f0_method"], info=translations["f0_method_info"], choices=method_f0, value="rmvpe", interactive=True) + with gr.Accordion(translations["audio_path"], open=True): + input_audio_path = gr.Dropdown(label=translations["audio_path"], value="", choices=paths_for_files, allow_custom_value=True, interactive=True) + refesh_audio_button = gr.Button(translations["refesh"]) + with gr.Row(): + gr.Markdown("___") + with gr.Row(): + file_output = gr.File(label="", file_types=[".txt"], interactive=False) + image_output = gr.Image(label="", interactive=False, show_download_button=True) + with gr.Row(): + upload_audio_file.upload(fn=lambda audio_in: shutil.move(audio_in.name, os.path.join("audios")), inputs=[upload_audio_file], outputs=[input_audio_path]) + input_audio_path.change(fn=lambda audio: audio if os.path.isfile(audio) else None, inputs=[input_audio_path], outputs=[audioplay]) + refesh_audio_button.click(fn=change_audios_choices, inputs=[input_audio_path], outputs=[input_audio_path]) + with gr.Row(): + extractor_button.click( + fn=f0_extract, + inputs=[ + input_audio_path, + f0_method_extract, + onnx_f0_mode3 + ], + outputs=[file_output, image_output], + api_name="f0_extract" + ) + + with gr.TabItem(translations["settings"], visible=configs.get("settings_tab", True)): + gr.Markdown(translations["settings_markdown"]) + with gr.Row(): + gr.Markdown(translations["settings_markdown_2"]) + with gr.Row(): + toggle_button = gr.Button(translations["change_light_dark"], variant="secondary", scale=2) + with gr.Row(): + with gr.Column(): + language_dropdown = gr.Dropdown(label=translations["lang"], interactive=True, info=translations["lang_restart"], choices=configs.get("support_language", "vi-VN"), value=language) + change_lang = gr.Button(translations["change_lang"], variant="primary", scale=2) + with gr.Column(): + theme_dropdown = gr.Dropdown(label=translations["theme"], interactive=True, info=translations["theme_restart"], choices=configs.get("themes", theme), value=theme, allow_custom_value=True) + changetheme = gr.Button(translations["theme_button"], variant="primary", scale=2) + with gr.Row(): + with gr.Column(): + fp_choice = gr.Radio(choices=["fp16","fp32"], value="fp16" if configs.get("fp16", False) else "fp32", label=translations["precision"], info=translations["precision_info"], interactive=True) + fp_button = gr.Button(translations["update_precision"], variant="secondary", scale=2) + with gr.Column(): + font_choice = gr.Textbox(label=translations["font"], info=translations["font_info"], value=font, interactive=True) + font_button = gr.Button(translations["change_font"]) + with gr.Row(): + with gr.Column(): + with gr.Accordion(translations["stop"], open=False): + separate_stop = gr.Button(translations["stop_separate"]) + convert_stop = gr.Button(translations["stop_convert"]) + create_dataset_stop = gr.Button(translations["stop_create_dataset"]) + audioldm2_stop = gr.Button(translations["stop_audioldm2"]) + with gr.Accordion(translations["stop_training"], open=False): + model_name_stop = gr.Textbox(label=translations["modelname"], info=translations["training_model_name"], value="", placeholder=translations["modelname"], interactive=True) + preprocess_stop = gr.Button(translations["stop_preprocess"]) + extract_stop = gr.Button(translations["stop_extract"]) + train_stop = gr.Button(translations["stop_training"]) + with gr.Row(): + toggle_button.click(fn=None, js="() => {document.body.classList.toggle('dark')}") + fp_button.click(fn=change_fp, inputs=[fp_choice], outputs=[fp_choice]) + with gr.Row(): + change_lang.click(fn=change_language, inputs=[language_dropdown], outputs=[]) + changetheme.click(fn=change_theme, inputs=[theme_dropdown], outputs=[]) + font_button.click(fn=change_font, inputs=[font_choice], outputs=[]) + with gr.Row(): + change_lang.click(fn=None, js="setTimeout(function() {location.reload()}, 15000)", inputs=[], outputs=[]) + changetheme.click(fn=None, js="setTimeout(function() {location.reload()}, 15000)", inputs=[], outputs=[]) + font_button.click(fn=None, js="setTimeout(function() {location.reload()}, 15000)", inputs=[], outputs=[]) + with gr.Row(): + separate_stop.click(fn=lambda: stop_pid("separate_pid", None, False), inputs=[], outputs=[]) + convert_stop.click(fn=lambda: stop_pid("convert_pid", None, False), inputs=[], outputs=[]) + create_dataset_stop.click(fn=lambda: stop_pid("create_dataset_pid", None, False), inputs=[], outputs=[]) + with gr.Row(): + preprocess_stop.click(fn=lambda model_name_stop: stop_pid("preprocess_pid", model_name_stop, False), inputs=[model_name_stop], outputs=[]) + extract_stop.click(fn=lambda model_name_stop: stop_pid("extract_pid", model_name_stop, False), inputs=[model_name_stop], outputs=[]) + train_stop.click(fn=lambda model_name_stop: stop_pid("train_pid", model_name_stop, True), inputs=[model_name_stop], outputs=[]) + with gr.Row(): + audioldm2_stop.click(fn=lambda: stop_pid("audioldm2_pid", None, False), inputs=[], outputs=[]) + + + + with gr.Row(): + gr.Markdown(translations["terms_of_use"]) + with gr.Row(): + gr.Markdown(translations["exemption"]) + + logger.info(translations["start_app"]) + logger.info(translations["set_lang"].format(lang=language)) + + port = configs.get("app_port", 7860) + + for i in range(configs.get("num_of_restart", 5)): + try: + app.queue().launch( + favicon_path=os.path.join("assets", "ico.png"), + server_name=configs.get("server_name", "0.0.0.0"), + server_port=port, + show_error=configs.get("app_show_error", False), + inbrowser="--open" in sys.argv, + share="--share" in sys.argv, + allowed_paths=allow_disk + ) + break + except OSError: + logger.debug(translations["port"].format(port=port)) + port -= 1 + except Exception as e: + logger.error(translations["error_occurred"].format(e=e)) + sys.exit(1)