import os import re import ssl import sys import json import torch import codecs import shutil import asyncio import librosa import logging import datetime import platform import requests import warnings import threading import subprocess import logging.handlers import numpy as np import gradio as gr import pandas as pd import soundfile as sf from time import sleep from multiprocessing import cpu_count sys.path.append(os.getcwd()) from main.tools import huggingface from main.configs.config import Config from main.app.based.utils import * with gr.Blocks(title=" Ultimate RVC Maker ⚡", theme=theme) as app: gr.HTML("

Ultimate RVC Maker ⚡

") with gr.Tabs(): with gr.TabItem(translations["separator_tab"], visible=configs.get("separator_tab", True)): gr.Markdown(f"## {translations['separator_tab']}") with gr.Row(): gr.Markdown(translations["4_part"]) with gr.Row(): with gr.Column(): with gr.Group(): with gr.Row(): cleaner = gr.Checkbox(label=translations["clear_audio"], value=False, interactive=True, min_width=140) backing = gr.Checkbox(label=translations["separator_backing"], value=False, interactive=True, min_width=140) reverb = gr.Checkbox(label=translations["dereveb_audio"], value=False, interactive=True, min_width=140) backing_reverb = gr.Checkbox(label=translations["dereveb_backing"], value=False, interactive=False, min_width=140) denoise = gr.Checkbox(label=translations["denoise_mdx"], value=False, interactive=False, min_width=140) with gr.Row(): separator_model = gr.Dropdown(label=translations["separator_model"], value=uvr_model[0], choices=uvr_model, interactive=True) separator_backing_model = gr.Dropdown(label=translations["separator_backing_model"], value="Version-1", choices=["Version-1", "Version-2"], interactive=True, visible=backing.value) with gr.Row(): with gr.Column(): separator_button = gr.Button(translations["separator_tab"], variant="primary") with gr.Row(): with gr.Column(): with gr.Group(): with gr.Row(): shifts = gr.Slider(label=translations["shift"], info=translations["shift_info"], minimum=1, maximum=20, value=2, step=1, interactive=True) segment_size = gr.Slider(label=translations["segments_size"], info=translations["segments_size_info"], minimum=32, maximum=3072, value=256, step=32, interactive=True) with gr.Row(): mdx_batch_size = gr.Slider(label=translations["batch_size"], info=translations["mdx_batch_size_info"], minimum=1, maximum=64, value=1, step=1, interactive=True, visible=backing.value or reverb.value or separator_model.value in mdx_model) with gr.Column(): with gr.Group(): with gr.Row(): overlap = gr.Radio(label=translations["overlap"], info=translations["overlap_info"], choices=["0.25", "0.5", "0.75", "0.99"], value="0.25", interactive=True) with gr.Row(): mdx_hop_length = gr.Slider(label="Hop length", info=translations["hop_length_info"], minimum=1, maximum=8192, value=1024, step=1, interactive=True, visible=backing.value or reverb.value or separator_model.value in mdx_model) with gr.Row(): with gr.Column(): input = gr.File(label=translations["drop_audio"], file_types=[".wav", ".mp3", ".flac", ".ogg", ".opus", ".m4a", ".mp4", ".aac", ".alac", ".wma", ".aiff", ".webm", ".ac3"]) with gr.Accordion(translations["use_url"], open=False): url = gr.Textbox(label=translations["url_audio"], value="", placeholder="https://www.youtube.com/...", scale=6) download_button = gr.Button(translations["downloads"]) with gr.Column(): with gr.Row(): clean_strength = gr.Slider(label=translations["clean_strength"], info=translations["clean_strength_info"], minimum=0, maximum=1, value=0.5, step=0.1, interactive=True, visible=cleaner.value) sample_rate1 = gr.Slider(minimum=8000, maximum=96000, step=1, value=44100, label=translations["sr"], info=translations["sr_info"], interactive=True) with gr.Row(): with gr.Accordion(translations["input_output"], open=False): format = gr.Radio(label=translations["export_format"], info=translations["export_info"], choices=["wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3"], value="wav", interactive=True) input_audio = gr.Dropdown(label=translations["audio_path"], value="", choices=paths_for_files, allow_custom_value=True, interactive=True) refesh_separator = gr.Button(translations["refesh"]) output_separator = gr.Textbox(label=translations["output_folder"], value="audios", placeholder="audios", info=translations["output_folder_info"], interactive=True) audio_input = gr.Audio(show_download_button=True, interactive=False, label=translations["input_audio"]) with gr.Row(): gr.Markdown(translations["output_separator"]) with gr.Row(): instruments_audio = gr.Audio(show_download_button=True, interactive=False, label=translations["instruments"]) original_vocals = gr.Audio(show_download_button=True, interactive=False, label=translations["original_vocal"]) main_vocals = gr.Audio(show_download_button=True, interactive=False, label=translations["main_vocal"], visible=backing.value) backing_vocals = gr.Audio(show_download_button=True, interactive=False, label=translations["backing_vocal"], visible=backing.value) with gr.Row(): separator_model.change(fn=lambda a, b, c: [visible(a or b or c in mdx_model), visible(a or b or c in mdx_model), valueFalse_interactive(a or b or c in mdx_model), visible(c not in mdx_model)], inputs=[backing, reverb, separator_model], outputs=[mdx_batch_size, mdx_hop_length, denoise, shifts]) backing.change(fn=lambda a, b, c: [visible(a or b or c in mdx_model), visible(a or b or c in mdx_model), valueFalse_interactive(a or b or c in mdx_model), visible(a), visible(a), visible(a), valueFalse_interactive(a and b)], inputs=[backing, reverb, separator_model], outputs=[mdx_batch_size, mdx_hop_length, denoise, separator_backing_model, main_vocals, backing_vocals, backing_reverb]) reverb.change(fn=lambda a, b, c: [visible(a or b or c in mdx_model), visible(a or b or c in mdx_model), valueFalse_interactive(a or b or c in mdx_model), valueFalse_interactive(a and b)], inputs=[backing, reverb, separator_model], outputs=[mdx_batch_size, mdx_hop_length, denoise, backing_reverb]) with gr.Row(): input_audio.change(fn=lambda audio: audio if os.path.isfile(audio) else None, inputs=[input_audio], outputs=[audio_input]) cleaner.change(fn=visible, inputs=[cleaner], outputs=[clean_strength]) with gr.Row(): input.upload(fn=lambda audio_in: shutil.move(audio_in.name, os.path.join("audios")), inputs=[input], outputs=[input_audio]) refesh_separator.click(fn=change_audios_choices, inputs=[input_audio], outputs=[input_audio]) with gr.Row(): download_button.click( fn=download_url, inputs=[url], outputs=[input_audio, audio_input, url], api_name='download_url' ) separator_button.click( fn=separator_music, inputs=[ input_audio, output_separator, format, shifts, segment_size, overlap, cleaner, clean_strength, denoise, separator_model, separator_backing_model, backing, reverb, backing_reverb, mdx_hop_length, mdx_batch_size, sample_rate1 ], outputs=[original_vocals, instruments_audio, main_vocals, backing_vocals], api_name='separator_music' ) with gr.TabItem(translations["convert_audio"], visible=configs.get("convert_tab", True)): gr.Markdown(f"## {translations['convert_audio']}") with gr.Row(): gr.Markdown(translations["convert_info"]) with gr.Row(): with gr.Column(): with gr.Accordion(translations["model_accordion"], open=True): with gr.Row(): model_pth = gr.Dropdown(label=translations["model_name"], choices=model_name, value=model_name[0] if len(model_name) >= 1 else "", interactive=True, allow_custom_value=True) model_index = gr.Dropdown(label=translations["index_path"], choices=index_path, value=index_path[0] if len(index_path) >= 1 else "", interactive=True, allow_custom_value=True) refesh = gr.Button(translations["refesh"]) with gr.Row(): with gr.Column(): audio_select = gr.Dropdown(label=translations["select_separate"], choices=[], value="", interactive=True, allow_custom_value=True, visible=False) convert_button_2 = gr.Button(translations["convert_audio"], visible=False) with gr.Row(): with gr.Column(): input0 = gr.File(label=translations["drop_audio"], file_types=[".wav", ".mp3", ".flac", ".ogg", ".opus", ".m4a", ".mp4", ".aac", ".alac", ".wma", ".aiff", ".webm", ".ac3"]) play_audio = gr.Audio(show_download_button=True, interactive=False, label=translations["input_audio"]) with gr.Row(): with gr.Column(): with gr.Row(): index_strength = gr.Slider(label=translations["index_strength"], info=translations["index_strength_info"], minimum=0, maximum=1, value=0.5, step=0.01, interactive=True, visible=model_index.value != "") with gr.Row(): with gr.Column(): with gr.Accordion(translations["input_output"], open=False): with gr.Column(): export_format = gr.Radio(label=translations["export_format"], info=translations["export_info"], choices=["wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3"], value="wav", interactive=True) input_audio0 = gr.Dropdown(label=translations["audio_path"], value="", choices=paths_for_files, info=translations["provide_audio"], allow_custom_value=True, interactive=True) output_audio = gr.Textbox(label=translations["output_path"], value="audios/output.wav", placeholder="audios/output.wav", info=translations["output_path_info"], interactive=True) with gr.Column(): refesh0 = gr.Button(translations["refesh"]) with gr.Accordion(translations["setting"], open=False): with gr.Row(): cleaner0 = gr.Checkbox(label=translations["clear_audio"], value=False, interactive=True) autotune = gr.Checkbox(label=translations["autotune"], value=False, interactive=True) use_audio = gr.Checkbox(label=translations["use_audio"], value=False, interactive=True) checkpointing = gr.Checkbox(label=translations["memory_efficient_training"], value=False, interactive=True) with gr.Row(): use_original = gr.Checkbox(label=translations["convert_original"], value=False, interactive=True, visible=use_audio.value) convert_backing = gr.Checkbox(label=translations["convert_backing"], value=False, interactive=True, visible=use_audio.value) not_merge_backing = gr.Checkbox(label=translations["not_merge_backing"], value=False, interactive=True, visible=use_audio.value) merge_instrument = gr.Checkbox(label=translations["merge_instruments"], value=False, interactive=True, visible=use_audio.value) with gr.Row(): pitch = gr.Slider(minimum=-20, maximum=20, step=1, info=translations["pitch_info"], label=translations["pitch"], value=0, interactive=True) clean_strength0 = gr.Slider(label=translations["clean_strength"], info=translations["clean_strength_info"], minimum=0, maximum=1, value=0.5, step=0.1, interactive=True, visible=cleaner0.value) with gr.Accordion(translations["f0_method"], open=False): with gr.Group(): with gr.Row(): onnx_f0_mode = gr.Checkbox(label=translations["f0_onnx_mode"], info=translations["f0_onnx_mode_info"], value=False, interactive=True) unlock_full_method = gr.Checkbox(label=translations["f0_unlock"], info=translations["f0_unlock_info"], value=False, interactive=True) method = gr.Radio(label=translations["f0_method"], info=translations["f0_method_info"], choices=method_f0+["hybrid"], value="rmvpe", interactive=True) hybrid_method = gr.Dropdown(label=translations["f0_method_hybrid"], info=translations["f0_method_hybrid_info"], choices=["hybrid[pm+dio]", "hybrid[pm+crepe-tiny]", "hybrid[pm+crepe]", "hybrid[pm+fcpe]", "hybrid[pm+rmvpe]", "hybrid[pm+harvest]", "hybrid[pm+yin]", "hybrid[dio+crepe-tiny]", "hybrid[dio+crepe]", "hybrid[dio+fcpe]", "hybrid[dio+rmvpe]", "hybrid[dio+harvest]", "hybrid[dio+yin]", "hybrid[crepe-tiny+crepe]", "hybrid[crepe-tiny+fcpe]", "hybrid[crepe-tiny+rmvpe]", "hybrid[crepe-tiny+harvest]", "hybrid[crepe+fcpe]", "hybrid[crepe+rmvpe]", "hybrid[crepe+harvest]", "hybrid[crepe+yin]", "hybrid[fcpe+rmvpe]", "hybrid[fcpe+harvest]", "hybrid[fcpe+yin]", "hybrid[rmvpe+harvest]", "hybrid[rmvpe+yin]", "hybrid[harvest+yin]"], value="hybrid[pm+dio]", interactive=True, allow_custom_value=True, visible=method.value == "hybrid") hop_length = gr.Slider(label="Hop length", info=translations["hop_length_info"], minimum=1, maximum=512, value=128, step=1, interactive=True, visible=False) with gr.Accordion(translations["f0_file"], open=False): upload_f0_file = gr.File(label=translations["upload_f0"], file_types=[".txt"]) f0_file_dropdown = gr.Dropdown(label=translations["f0_file_2"], value="", choices=f0_file, allow_custom_value=True, interactive=True) refesh_f0_file = gr.Button(translations["refesh"]) with gr.Accordion(translations["hubert_model"], open=False): embed_mode = gr.Radio(label=translations["embed_mode"], info=translations["embed_mode_info"], value="fairseq", choices=embedders_mode, interactive=True, visible=True) embedders = gr.Radio(label=translations["hubert_model"], info=translations["hubert_info"], choices=embedders_model, value="hubert_base", interactive=True) custom_embedders = gr.Textbox(label=translations["modelname"], info=translations["modelname_info"], value="", placeholder="hubert_base", interactive=True, visible=embedders.value == "custom") with gr.Accordion(translations["use_presets"], open=False): with gr.Row(): presets_name = gr.Dropdown(label=translations["file_preset"], choices=presets_file, value=presets_file[0] if len(presets_file) > 0 else '', interactive=True, allow_custom_value=True) with gr.Row(): load_click = gr.Button(translations["load_file"], variant="primary") refesh_click = gr.Button(translations["refesh"]) with gr.Accordion(translations["export_file"], open=False): with gr.Row(): with gr.Column(): with gr.Group(): with gr.Row(): cleaner_chbox = gr.Checkbox(label=translations["save_clean"], value=True, interactive=True) autotune_chbox = gr.Checkbox(label=translations["save_autotune"], value=True, interactive=True) pitch_chbox = gr.Checkbox(label=translations["save_pitch"], value=True, interactive=True) index_strength_chbox = gr.Checkbox(label=translations["save_index_2"], value=True, interactive=True) resample_sr_chbox = gr.Checkbox(label=translations["save_resample"], value=True, interactive=True) filter_radius_chbox = gr.Checkbox(label=translations["save_filter"], value=True, interactive=True) volume_envelope_chbox = gr.Checkbox(label=translations["save_envelope"], value=True, interactive=True) protect_chbox = gr.Checkbox(label=translations["save_protect"], value=True, interactive=True) split_audio_chbox = gr.Checkbox(label=translations["save_split"], value=True, interactive=True) formant_shifting_chbox = gr.Checkbox(label=translations["formantshift"], value=True, interactive=True) with gr.Row(): with gr.Column(): name_to_save_file = gr.Textbox(label=translations["filename_to_save"]) save_file_button = gr.Button(translations["export_file"]) with gr.Row(): upload_presets = gr.File(label=translations["upload_presets"], file_types=[".json"]) with gr.Column(): with gr.Row(): split_audio = gr.Checkbox(label=translations["split_audio"], value=False, interactive=True) formant_shifting = gr.Checkbox(label=translations["formantshift"], value=False, interactive=True) f0_autotune_strength = gr.Slider(minimum=0, maximum=1, label=translations["autotune_rate"], info=translations["autotune_rate_info"], value=1, step=0.1, interactive=True, visible=autotune.value) resample_sr = gr.Slider(minimum=0, maximum=96000, label=translations["resample"], info=translations["resample_info"], value=0, step=1, interactive=True) filter_radius = gr.Slider(minimum=0, maximum=7, label=translations["filter_radius"], info=translations["filter_radius_info"], value=3, step=1, interactive=True) volume_envelope = gr.Slider(minimum=0, maximum=1, label=translations["volume_envelope"], info=translations["volume_envelope_info"], value=1, step=0.1, interactive=True) protect = gr.Slider(minimum=0, maximum=1, label=translations["protect"], info=translations["protect_info"], value=0.5, step=0.01, interactive=True) with gr.Row(): formant_qfrency = gr.Slider(value=1.0, label=translations["formant_qfrency"], info=translations["formant_qfrency"], minimum=0.0, maximum=16.0, step=0.1, interactive=True, visible=False) formant_timbre = gr.Slider(value=1.0, label=translations["formant_timbre"], info=translations["formant_timbre"], minimum=0.0, maximum=16.0, step=0.1, interactive=True, visible=False) with gr.Row(): convert_button = gr.Button(translations["convert_audio"], variant="primary") gr.Markdown(translations["output_convert"]) with gr.Row(): main_convert = gr.Audio(show_download_button=True, interactive=False, label=translations["main_convert"]) backing_convert = gr.Audio(show_download_button=True, interactive=False, label=translations["convert_backing"], visible=convert_backing.value) main_backing = gr.Audio(show_download_button=True, interactive=False, label=translations["main_or_backing"], visible=convert_backing.value) with gr.Row(): original_convert = gr.Audio(show_download_button=True, interactive=False, label=translations["convert_original"], visible=use_original.value) vocal_instrument = gr.Audio(show_download_button=True, interactive=False, label=translations["voice_or_instruments"], visible=merge_instrument.value) with gr.Row(): upload_f0_file.upload(fn=lambda inp: shutil.move(inp.name, os.path.join("assets", "f0")), inputs=[upload_f0_file], outputs=[f0_file_dropdown]) refesh_f0_file.click(fn=change_f0_choices, inputs=[], outputs=[f0_file_dropdown]) unlock_full_method.change(fn=unlock_f0, inputs=[unlock_full_method], outputs=[method]) with gr.Row(): load_click.click( fn=load_presets, inputs=[ presets_name, cleaner0, autotune, pitch, clean_strength0, index_strength, resample_sr, filter_radius, volume_envelope, protect, split_audio, f0_autotune_strength, formant_qfrency, formant_timbre ], outputs=[ cleaner0, autotune, pitch, clean_strength0, index_strength, resample_sr, filter_radius, volume_envelope, protect, split_audio, f0_autotune_strength, formant_shifting, formant_qfrency, formant_timbre ] ) refesh_click.click(fn=change_preset_choices, inputs=[], outputs=[presets_name]) save_file_button.click( fn=save_presets, inputs=[ name_to_save_file, cleaner0, autotune, pitch, clean_strength0, index_strength, resample_sr, filter_radius, volume_envelope, protect, split_audio, f0_autotune_strength, cleaner_chbox, autotune_chbox, pitch_chbox, index_strength_chbox, resample_sr_chbox, filter_radius_chbox, volume_envelope_chbox, protect_chbox, split_audio_chbox, formant_shifting_chbox, formant_shifting, formant_qfrency, formant_timbre ], outputs=[presets_name] ) with gr.Row(): upload_presets.upload(fn=lambda audio_in: shutil.move(audio_in.name, os.path.join("assets", "presets")), inputs=[upload_presets], outputs=[presets_name]) autotune.change(fn=visible, inputs=[autotune], outputs=[f0_autotune_strength]) use_audio.change(fn=lambda a: [visible(a), visible(a), visible(a), visible(a), visible(a), valueFalse_interactive(a), valueFalse_interactive(a), valueFalse_interactive(a), valueFalse_interactive(a), visible(not a), visible(not a), visible(not a), visible(not a)], inputs=[use_audio], outputs=[main_backing, use_original, convert_backing, not_merge_backing, merge_instrument, use_original, convert_backing, not_merge_backing, merge_instrument, input_audio0, output_audio, input0, play_audio]) with gr.Row(): convert_backing.change(fn=lambda a,b: [change_backing_choices(a, b), visible(a)], inputs=[convert_backing, not_merge_backing], outputs=[use_original, backing_convert]) use_original.change(fn=lambda audio, original: [visible(original), visible(not original), visible(audio and not original), valueFalse_interactive(not original), valueFalse_interactive(not original)], inputs=[use_audio, use_original], outputs=[original_convert, main_convert, main_backing, convert_backing, not_merge_backing]) cleaner0.change(fn=visible, inputs=[cleaner0], outputs=[clean_strength0]) with gr.Row(): merge_instrument.change(fn=visible, inputs=[merge_instrument], outputs=[vocal_instrument]) not_merge_backing.change(fn=lambda audio, merge, cvb: [visible(audio and not merge), change_backing_choices(cvb, merge)], inputs=[use_audio, not_merge_backing, convert_backing], outputs=[main_backing, use_original]) method.change(fn=lambda method, hybrid: [visible(method == "hybrid"), hoplength_show(method, hybrid)], inputs=[method, hybrid_method], outputs=[hybrid_method, hop_length]) with gr.Row(): hybrid_method.change(fn=hoplength_show, inputs=[method, hybrid_method], outputs=[hop_length]) refesh.click(fn=change_models_choices, inputs=[], outputs=[model_pth, model_index]) model_pth.change(fn=get_index, inputs=[model_pth], outputs=[model_index]) with gr.Row(): input0.upload(fn=lambda audio_in: shutil.move(audio_in.name, os.path.join("audios")), inputs=[input0], outputs=[input_audio0]) input_audio0.change(fn=lambda audio: audio if os.path.isfile(audio) else None, inputs=[input_audio0], outputs=[play_audio]) formant_shifting.change(fn=lambda a: [visible(a)]*2, inputs=[formant_shifting], outputs=[formant_qfrency, formant_timbre]) with gr.Row(): embedders.change(fn=lambda embedders: visible(embedders == "custom"), inputs=[embedders], outputs=[custom_embedders]) refesh0.click(fn=change_audios_choices, inputs=[input_audio0], outputs=[input_audio0]) model_index.change(fn=index_strength_show, inputs=[model_index], outputs=[index_strength]) with gr.Row(): audio_select.change(fn=lambda: visible(True), inputs=[], outputs=[convert_button_2]) convert_button.click(fn=lambda: visible(False), inputs=[], outputs=[convert_button]) convert_button_2.click(fn=lambda: [visible(False), visible(False)], inputs=[], outputs=[audio_select, convert_button_2]) with gr.Row(): convert_button.click( fn=convert_selection, inputs=[ cleaner0, autotune, use_audio, use_original, convert_backing, not_merge_backing, merge_instrument, pitch, clean_strength0, model_pth, model_index, index_strength, input_audio0, output_audio, export_format, method, hybrid_method, hop_length, embedders, custom_embedders, resample_sr, filter_radius, volume_envelope, protect, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file_dropdown, embed_mode ], outputs=[audio_select, main_convert, backing_convert, main_backing, original_convert, vocal_instrument, convert_button], api_name="convert_selection" ) embed_mode.change(fn=visible_embedders, inputs=[embed_mode], outputs=[embedders]) convert_button_2.click( fn=convert_audio, inputs=[ cleaner0, autotune, use_audio, use_original, convert_backing, not_merge_backing, merge_instrument, pitch, clean_strength0, model_pth, model_index, index_strength, input_audio0, output_audio, export_format, method, hybrid_method, hop_length, embedders, custom_embedders, resample_sr, filter_radius, volume_envelope, protect, split_audio, f0_autotune_strength, audio_select, checkpointing, onnx_f0_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file_dropdown, embed_mode ], outputs=[main_convert, backing_convert, main_backing, original_convert, vocal_instrument, convert_button], api_name="convert_audio" ) with gr.TabItem(translations["convert_with_whisper"], visible=configs.get("convert_with_whisper", True)): gr.Markdown(f"## {translations['convert_with_whisper']}") with gr.Row(): gr.Markdown(translations["convert_with_whisper_info"]) with gr.Row(): with gr.Column(): with gr.Group(): with gr.Row(): cleaner2 = gr.Checkbox(label=translations["clear_audio"], value=False, interactive=True) autotune2 = gr.Checkbox(label=translations["autotune"], value=False, interactive=True) checkpointing2 = gr.Checkbox(label=translations["memory_efficient_training"], value=False, interactive=True) formant_shifting2 = gr.Checkbox(label=translations["formantshift"], value=False, interactive=True) with gr.Row(): num_spk = gr.Slider(minimum=2, maximum=8, step=1, info=translations["num_spk_info"], label=translations["num_spk"], value=2, interactive=True) with gr.Row(): with gr.Column(): convert_button3 = gr.Button(translations["convert_audio"], variant="primary") with gr.Row(): with gr.Column(): with gr.Accordion(translations["model_accordion"] + " 1", open=True): with gr.Row(): model_pth2 = gr.Dropdown(label=translations["model_name"], choices=model_name, value=model_name[0] if len(model_name) >= 1 else "", interactive=True, allow_custom_value=True) model_index2 = gr.Dropdown(label=translations["index_path"], choices=index_path, value=index_path[0] if len(index_path) >= 1 else "", interactive=True, allow_custom_value=True) with gr.Row(): refesh2 = gr.Button(translations["refesh"]) with gr.Row(): pitch3 = gr.Slider(minimum=-20, maximum=20, step=1, info=translations["pitch_info"], label=translations["pitch"], value=0, interactive=True) index_strength2 = gr.Slider(label=translations["index_strength"], info=translations["index_strength_info"], minimum=0, maximum=1, value=0.5, step=0.01, interactive=True, visible=model_index2.value != "") with gr.Accordion(translations["input_output"], open=False): with gr.Column(): export_format2 = gr.Radio(label=translations["export_format"], info=translations["export_info"], choices=["wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3"], value="wav", interactive=True) input_audio1 = gr.Dropdown(label=translations["audio_path"], value="", choices=paths_for_files, info=translations["provide_audio"], allow_custom_value=True, interactive=True) output_audio2 = gr.Textbox(label=translations["output_path"], value="audios/output.wav", placeholder="audios/output.wav", info=translations["output_path_info"], interactive=True) with gr.Column(): refesh4 = gr.Button(translations["refesh"]) with gr.Row(): input2 = gr.File(label=translations["drop_audio"], file_types=[".wav", ".mp3", ".flac", ".ogg", ".opus", ".m4a", ".mp4", ".aac", ".alac", ".wma", ".aiff", ".webm", ".ac3"]) with gr.Column(): with gr.Accordion(translations["model_accordion"] + " 2", open=True): with gr.Row(): model_pth3 = gr.Dropdown(label=translations["model_name"], choices=model_name, value=model_name[0] if len(model_name) >= 1 else "", interactive=True, allow_custom_value=True) model_index3 = gr.Dropdown(label=translations["index_path"], choices=index_path, value=index_path[0] if len(index_path) >= 1 else "", interactive=True, allow_custom_value=True) with gr.Row(): refesh3 = gr.Button(translations["refesh"]) with gr.Row(): pitch4 = gr.Slider(minimum=-20, maximum=20, step=1, info=translations["pitch_info"], label=translations["pitch"], value=0, interactive=True) index_strength3 = gr.Slider(label=translations["index_strength"], info=translations["index_strength_info"], minimum=0, maximum=1, value=0.5, step=0.01, interactive=True, visible=model_index3.value != "") with gr.Accordion(translations["setting"], open=False): with gr.Row(): model_size = gr.Radio(label=translations["model_size"], info=translations["model_size_info"], choices=["tiny", "tiny.en", "base", "base.en", "small", "small.en", "medium", "medium.en", "large-v1", "large-v2", "large-v3", "large-v3-turbo"], value="medium", interactive=True) with gr.Accordion(translations["f0_method"], open=False): with gr.Group(): with gr.Row(): onnx_f0_mode4 = gr.Checkbox(label=translations["f0_onnx_mode"], info=translations["f0_onnx_mode_info"], value=False, interactive=True) unlock_full_method2 = gr.Checkbox(label=translations["f0_unlock"], info=translations["f0_unlock_info"], value=False, interactive=True) method3 = gr.Radio(label=translations["f0_method"], info=translations["f0_method_info"], choices=method_f0+["hybrid"], value="rmvpe", interactive=True) hybrid_method3 = gr.Dropdown(label=translations["f0_method_hybrid"], info=translations["f0_method_hybrid_info"], choices=["hybrid[pm+dio]", "hybrid[pm+crepe-tiny]", "hybrid[pm+crepe]", "hybrid[pm+fcpe]", "hybrid[pm+rmvpe]", "hybrid[pm+harvest]", "hybrid[pm+yin]", "hybrid[dio+crepe-tiny]", "hybrid[dio+crepe]", "hybrid[dio+fcpe]", "hybrid[dio+rmvpe]", "hybrid[dio+harvest]", "hybrid[dio+yin]", "hybrid[crepe-tiny+crepe]", "hybrid[crepe-tiny+fcpe]", "hybrid[crepe-tiny+rmvpe]", "hybrid[crepe-tiny+harvest]", "hybrid[crepe+fcpe]", "hybrid[crepe+rmvpe]", "hybrid[crepe+harvest]", "hybrid[crepe+yin]", "hybrid[fcpe+rmvpe]", "hybrid[fcpe+harvest]", "hybrid[fcpe+yin]", "hybrid[rmvpe+harvest]", "hybrid[rmvpe+yin]", "hybrid[harvest+yin]"], value="hybrid[pm+dio]", interactive=True, allow_custom_value=True, visible=method3.value == "hybrid") hop_length3 = gr.Slider(label="Hop length", info=translations["hop_length_info"], minimum=1, maximum=512, value=128, step=1, interactive=True, visible=False) with gr.Accordion(translations["hubert_model"], open=False): embed_mode3 = gr.Radio(label=translations["embed_mode"], info=translations["embed_mode_info"], value="fairseq", choices=embedders_mode, interactive=True, visible=True) embedders3 = gr.Radio(label=translations["hubert_model"], info=translations["hubert_info"], choices=embedders_model, value="hubert_base", interactive=True) custom_embedders3 = gr.Textbox(label=translations["modelname"], info=translations["modelname_info"], value="", placeholder="hubert_base", interactive=True, visible=embedders3.value == "custom") with gr.Column(): clean_strength3 = gr.Slider(label=translations["clean_strength"], info=translations["clean_strength_info"], minimum=0, maximum=1, value=0.5, step=0.1, interactive=True, visible=cleaner2.value) f0_autotune_strength3 = gr.Slider(minimum=0, maximum=1, label=translations["autotune_rate"], info=translations["autotune_rate_info"], value=1, step=0.1, interactive=True, visible=autotune.value) resample_sr3 = gr.Slider(minimum=0, maximum=96000, label=translations["resample"], info=translations["resample_info"], value=0, step=1, interactive=True) filter_radius3 = gr.Slider(minimum=0, maximum=7, label=translations["filter_radius"], info=translations["filter_radius_info"], value=3, step=1, interactive=True) volume_envelope3 = gr.Slider(minimum=0, maximum=1, label=translations["volume_envelope"], info=translations["volume_envelope_info"], value=1, step=0.1, interactive=True) protect3 = gr.Slider(minimum=0, maximum=1, label=translations["protect"], info=translations["protect_info"], value=0.5, step=0.01, interactive=True) with gr.Row(): formant_qfrency3 = gr.Slider(value=1.0, label=translations["formant_qfrency"] + " 1", info=translations["formant_qfrency"], minimum=0.0, maximum=16.0, step=0.1, interactive=True, visible=False) formant_timbre3 = gr.Slider(value=1.0, label=translations["formant_timbre"] + " 1", info=translations["formant_timbre"], minimum=0.0, maximum=16.0, step=0.1, interactive=True, visible=False) with gr.Row(): formant_qfrency4 = gr.Slider(value=1.0, label=translations["formant_qfrency"] + " 2", info=translations["formant_qfrency"], minimum=0.0, maximum=16.0, step=0.1, interactive=True, visible=False) formant_timbre4 = gr.Slider(value=1.0, label=translations["formant_timbre"] + " 2", info=translations["formant_timbre"], minimum=0.0, maximum=16.0, step=0.1, interactive=True, visible=False) with gr.Row(): gr.Markdown(translations["input_output"]) with gr.Row(): play_audio2 = gr.Audio(show_download_button=True, interactive=False, label=translations["input_audio"]) play_audio3 = gr.Audio(show_download_button=True, interactive=False, label=translations["output_file_tts_convert"]) with gr.Row(): autotune2.change(fn=visible, inputs=[autotune2], outputs=[f0_autotune_strength3]) cleaner2.change(fn=visible, inputs=[cleaner2], outputs=[clean_strength3]) method3.change(fn=lambda method, hybrid: [visible(method == "hybrid"), hoplength_show(method, hybrid)], inputs=[method3, hybrid_method3], outputs=[hybrid_method3, hop_length3]) with gr.Row(): hybrid_method3.change(fn=hoplength_show, inputs=[method3, hybrid_method3], outputs=[hop_length3]) refesh2.click(fn=change_models_choices, inputs=[], outputs=[model_pth2, model_index2]) model_pth2.change(fn=get_index, inputs=[model_pth2], outputs=[model_index2]) with gr.Row(): refesh3.click(fn=change_models_choices, inputs=[], outputs=[model_pth3, model_index3]) model_pth3.change(fn=get_index, inputs=[model_pth3], outputs=[model_index3]) input2.upload(fn=lambda audio_in: shutil.move(audio_in.name, os.path.join("audios")), inputs=[input2], outputs=[input_audio1]) with gr.Row(): input_audio1.change(fn=lambda audio: audio if os.path.isfile(audio) else None, inputs=[input_audio1], outputs=[play_audio2]) formant_shifting2.change(fn=lambda a: [visible(a)]*4, inputs=[formant_shifting2], outputs=[formant_qfrency3, formant_timbre3, formant_qfrency4, formant_timbre4]) embedders3.change(fn=lambda embedders: visible(embedders == "custom"), inputs=[embedders3], outputs=[custom_embedders3]) with gr.Row(): refesh4.click(fn=change_audios_choices, inputs=[input_audio1], outputs=[input_audio1]) model_index2.change(fn=index_strength_show, inputs=[model_index2], outputs=[index_strength2]) model_index3.change(fn=index_strength_show, inputs=[model_index3], outputs=[index_strength3]) with gr.Row(): unlock_full_method2.change(fn=unlock_f0, inputs=[unlock_full_method2], outputs=[method3]) embed_mode3.change(fn=visible_embedders, inputs=[embed_mode3], outputs=[embedders3]) convert_button3.click( fn=convert_with_whisper, inputs=[ num_spk, model_size, cleaner2, clean_strength3, autotune2, f0_autotune_strength3, checkpointing2, model_pth2, model_pth3, model_index2, model_index3, pitch3, pitch4, index_strength2, index_strength3, export_format2, input_audio1, output_audio2, onnx_f0_mode4, method3, hybrid_method3, hop_length3, embed_mode3, embedders3, custom_embedders3, resample_sr3, filter_radius3, volume_envelope3, protect3, formant_shifting2, formant_qfrency3, formant_timbre3, formant_qfrency4, formant_timbre4, ], outputs=[play_audio3], api_name="convert_with_whisper" ) with gr.TabItem(translations["convert_text"], visible=configs.get("tts_tab", True)): gr.Markdown(translations["convert_text_markdown"]) with gr.Row(): gr.Markdown(translations["convert_text_markdown_2"]) with gr.Row(): with gr.Column(): with gr.Group(): with gr.Row(): use_txt = gr.Checkbox(label=translations["input_txt"], value=False, interactive=True) google_tts_check_box = gr.Checkbox(label=translations["googletts"], value=False, interactive=True) prompt = gr.Textbox(label=translations["text_to_speech"], value="", placeholder="Hello Words", lines=3) with gr.Column(): speed = gr.Slider(label=translations["voice_speed"], info=translations["voice_speed_info"], minimum=-100, maximum=100, value=0, step=1) pitch0 = gr.Slider(minimum=-20, maximum=20, step=1, info=translations["pitch_info"], label=translations["pitch"], value=0, interactive=True) with gr.Row(): tts_button = gr.Button(translations["tts_1"], variant="primary", scale=2) convert_button0 = gr.Button(translations["tts_2"], variant="secondary", scale=2) with gr.Row(): with gr.Column(): txt_input = gr.File(label=translations["drop_text"], file_types=[".txt", ".srt"], visible=use_txt.value) tts_voice = gr.Dropdown(label=translations["voice"], choices=edgetts, interactive=True, value="vi-VN-NamMinhNeural") tts_pitch = gr.Slider(minimum=-20, maximum=20, step=1, info=translations["pitch_info_2"], label=translations["pitch"], value=0, interactive=True) with gr.Column(): with gr.Accordion(translations["model_accordion"], open=True): with gr.Row(): model_pth0 = gr.Dropdown(label=translations["model_name"], choices=model_name, value=model_name[0] if len(model_name) >= 1 else "", interactive=True, allow_custom_value=True) model_index0 = gr.Dropdown(label=translations["index_path"], choices=index_path, value=index_path[0] if len(index_path) >= 1 else "", interactive=True, allow_custom_value=True) with gr.Row(): refesh1 = gr.Button(translations["refesh"]) with gr.Row(): index_strength0 = gr.Slider(label=translations["index_strength"], info=translations["index_strength_info"], minimum=0, maximum=1, value=0.5, step=0.01, interactive=True, visible=model_index0.value != "") with gr.Accordion(translations["output_path"], open=False): export_format0 = gr.Radio(label=translations["export_format"], info=translations["export_info"], choices=["wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3"], value="wav", interactive=True) output_audio0 = gr.Textbox(label=translations["output_tts"], value="audios/tts.wav", placeholder="audios/tts.wav", info=translations["tts_output"], interactive=True) output_audio1 = gr.Textbox(label=translations["output_tts_convert"], value="audios/tts-convert.wav", placeholder="audios/tts-convert.wav", info=translations["tts_output"], interactive=True) with gr.Accordion(translations["setting"], open=False): with gr.Accordion(translations["f0_method"], open=False): with gr.Group(): with gr.Row(): onnx_f0_mode1 = gr.Checkbox(label=translations["f0_onnx_mode"], info=translations["f0_onnx_mode_info"], value=False, interactive=True) unlock_full_method3 = gr.Checkbox(label=translations["f0_unlock"], info=translations["f0_unlock_info"], value=False, interactive=True) method0 = gr.Radio(label=translations["f0_method"], info=translations["f0_method_info"], choices=method_f0+["hybrid"], value="rmvpe", interactive=True) hybrid_method0 = gr.Dropdown(label=translations["f0_method_hybrid"], info=translations["f0_method_hybrid_info"], choices=["hybrid[pm+dio]", "hybrid[pm+crepe-tiny]", "hybrid[pm+crepe]", "hybrid[pm+fcpe]", "hybrid[pm+rmvpe]", "hybrid[pm+harvest]", "hybrid[pm+yin]", "hybrid[dio+crepe-tiny]", "hybrid[dio+crepe]", "hybrid[dio+fcpe]", "hybrid[dio+rmvpe]", "hybrid[dio+harvest]", "hybrid[dio+yin]", "hybrid[crepe-tiny+crepe]", "hybrid[crepe-tiny+fcpe]", "hybrid[crepe-tiny+rmvpe]", "hybrid[crepe-tiny+harvest]", "hybrid[crepe+fcpe]", "hybrid[crepe+rmvpe]", "hybrid[crepe+harvest]", "hybrid[crepe+yin]", "hybrid[fcpe+rmvpe]", "hybrid[fcpe+harvest]", "hybrid[fcpe+yin]", "hybrid[rmvpe+harvest]", "hybrid[rmvpe+yin]", "hybrid[harvest+yin]"], value="hybrid[pm+dio]", interactive=True, allow_custom_value=True, visible=method0.value == "hybrid") hop_length0 = gr.Slider(label="Hop length", info=translations["hop_length_info"], minimum=1, maximum=512, value=128, step=1, interactive=True, visible=False) with gr.Accordion(translations["f0_file"], open=False): upload_f0_file0 = gr.File(label=translations["upload_f0"], file_types=[".txt"]) f0_file_dropdown0 = gr.Dropdown(label=translations["f0_file_2"], value="", choices=f0_file, allow_custom_value=True, interactive=True) refesh_f0_file0 = gr.Button(translations["refesh"]) with gr.Accordion(translations["hubert_model"], open=False): embed_mode1 = gr.Radio(label=translations["embed_mode"], info=translations["embed_mode_info"], value="fairseq", choices=embedders_mode, interactive=True, visible=True) embedders0 = gr.Radio(label=translations["hubert_model"], info=translations["hubert_info"], choices=embedders_model, value="hubert_base", interactive=True) custom_embedders0 = gr.Textbox(label=translations["modelname"], info=translations["modelname_info"], value="", placeholder="hubert_base", interactive=True, visible=embedders0.value == "custom") with gr.Group(): with gr.Row(): formant_shifting1 = gr.Checkbox(label=translations["formantshift"], value=False, interactive=True) split_audio0 = gr.Checkbox(label=translations["split_audio"], value=False, interactive=True) cleaner1 = gr.Checkbox(label=translations["clear_audio"], value=False, interactive=True) autotune3 = gr.Checkbox(label=translations["autotune"], value=False, interactive=True) checkpointing0 = gr.Checkbox(label=translations["memory_efficient_training"], value=False, interactive=True) with gr.Column(): f0_autotune_strength0 = gr.Slider(minimum=0, maximum=1, label=translations["autotune_rate"], info=translations["autotune_rate_info"], value=1, step=0.1, interactive=True, visible=autotune3.value) clean_strength1 = gr.Slider(label=translations["clean_strength"], info=translations["clean_strength_info"], minimum=0, maximum=1, value=0.5, step=0.1, interactive=True, visible=cleaner1.value) resample_sr0 = gr.Slider(minimum=0, maximum=96000, label=translations["resample"], info=translations["resample_info"], value=0, step=1, interactive=True) filter_radius0 = gr.Slider(minimum=0, maximum=7, label=translations["filter_radius"], info=translations["filter_radius_info"], value=3, step=1, interactive=True) volume_envelope0 = gr.Slider(minimum=0, maximum=1, label=translations["volume_envelope"], info=translations["volume_envelope_info"], value=1, step=0.1, interactive=True) protect0 = gr.Slider(minimum=0, maximum=1, label=translations["protect"], info=translations["protect_info"], value=0.5, step=0.01, interactive=True) with gr.Row(): formant_qfrency1 = gr.Slider(value=1.0, label=translations["formant_qfrency"], info=translations["formant_qfrency"], minimum=0.0, maximum=16.0, step=0.1, interactive=True, visible=False) formant_timbre1 = gr.Slider(value=1.0, label=translations["formant_timbre"], info=translations["formant_timbre"], minimum=0.0, maximum=16.0, step=0.1, interactive=True, visible=False) with gr.Row(): gr.Markdown(translations["output_tts_markdown"]) with gr.Row(): tts_voice_audio = gr.Audio(show_download_button=True, interactive=False, label=translations["output_text_to_speech"]) tts_voice_convert = gr.Audio(show_download_button=True, interactive=False, label=translations["output_file_tts_convert"]) with gr.Row(): unlock_full_method3.change(fn=unlock_f0, inputs=[unlock_full_method3], outputs=[method0]) upload_f0_file0.upload(fn=lambda inp: shutil.move(inp.name, os.path.join("assets", "f0")), inputs=[upload_f0_file0], outputs=[f0_file_dropdown0]) refesh_f0_file0.click(fn=change_f0_choices, inputs=[], outputs=[f0_file_dropdown0]) with gr.Row(): embed_mode1.change(fn=visible_embedders, inputs=[embed_mode1], outputs=[embedders0]) autotune3.change(fn=visible, inputs=[autotune3], outputs=[f0_autotune_strength0]) model_pth0.change(fn=get_index, inputs=[model_pth0], outputs=[model_index0]) with gr.Row(): cleaner1.change(fn=visible, inputs=[cleaner1], outputs=[clean_strength1]) method0.change(fn=lambda method, hybrid: [visible(method == "hybrid"), hoplength_show(method, hybrid)], inputs=[method0, hybrid_method0], outputs=[hybrid_method0, hop_length0]) hybrid_method0.change(fn=hoplength_show, inputs=[method0, hybrid_method0], outputs=[hop_length0]) with gr.Row(): refesh1.click(fn=change_models_choices, inputs=[], outputs=[model_pth0, model_index0]) embedders0.change(fn=lambda embedders: visible(embedders == "custom"), inputs=[embedders0], outputs=[custom_embedders0]) formant_shifting1.change(fn=lambda a: [visible(a)]*2, inputs=[formant_shifting1], outputs=[formant_qfrency1, formant_timbre1]) with gr.Row(): model_index0.change(fn=index_strength_show, inputs=[model_index0], outputs=[index_strength0]) txt_input.upload(fn=process_input, inputs=[txt_input], outputs=[prompt]) use_txt.change(fn=visible, inputs=[use_txt], outputs=[txt_input]) with gr.Row(): google_tts_check_box.change(fn=change_tts_voice_choices, inputs=[google_tts_check_box], outputs=[tts_voice]) tts_button.click( fn=TTS, inputs=[ prompt, tts_voice, speed, output_audio0, tts_pitch, google_tts_check_box, txt_input ], outputs=[tts_voice_audio], api_name="text-to-speech" ) convert_button0.click( fn=convert_tts, inputs=[ cleaner1, autotune3, pitch0, clean_strength1, model_pth0, model_index0, index_strength0, output_audio0, output_audio1, export_format0, method0, hybrid_method0, hop_length0, embedders0, custom_embedders0, resample_sr0, filter_radius0, volume_envelope0, protect0, split_audio0, f0_autotune_strength0, checkpointing0, onnx_f0_mode1, formant_shifting1, formant_qfrency1, formant_timbre1, f0_file_dropdown0, embed_mode1 ], outputs=[tts_voice_convert], api_name="convert_tts" ) with gr.TabItem(translations["audio_editing"], visible=configs.get("audioldm2", True)): gr.Markdown(translations["audio_editing_info"]) with gr.Row(): gr.Markdown(translations["audio_editing_markdown"]) with gr.Row(): with gr.Column(): with gr.Group(): with gr.Row(): save_compute = gr.Checkbox(label=translations["save_compute"], value=True, interactive=True) tar_prompt = gr.Textbox(label=translations["target_prompt"], info=translations["target_prompt_info"], placeholder="Piano and violin cover", lines=5, interactive=True) with gr.Column(): cfg_scale_src = gr.Slider(value=3, minimum=0.5, maximum=25, label=translations["cfg_scale_src"], info=translations["cfg_scale_src_info"], interactive=True) cfg_scale_tar = gr.Slider(value=12, minimum=0.5, maximum=25, label=translations["cfg_scale_tar"], info=translations["cfg_scale_tar_info"], interactive=True) with gr.Row(): edit_button = gr.Button(translations["editing"], variant="primary") with gr.Row(): with gr.Column(): drop_audio_file = gr.File(label=translations["drop_audio"], file_types=[".wav", ".mp3", ".flac", ".ogg", ".opus", ".m4a", ".mp4", ".aac", ".alac", ".wma", ".aiff", ".webm", ".ac3"]) display_audio = gr.Audio(show_download_button=True, interactive=False, label=translations["input_audio"]) with gr.Column(): with gr.Accordion(translations["input_output"], open=False): with gr.Column(): export_audio_format = gr.Radio(label=translations["export_format"], info=translations["export_info"], choices=["wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3"], value="wav", interactive=True) input_audiopath = gr.Dropdown(label=translations["audio_path"], value="", choices=paths_for_files, info=translations["provide_audio"], allow_custom_value=True, interactive=True) output_audiopath = gr.Textbox(label=translations["output_path"], value="audios/output.wav", placeholder="audios/output.wav", info=translations["output_path_info"], interactive=True) with gr.Column(): refesh_audio = gr.Button(translations["refesh"]) with gr.Accordion(translations["setting"], open=False): audioldm2_model = gr.Radio(label=translations["audioldm2_model"], info=translations["audioldm2_model_info"], choices=["audioldm2", "audioldm2-large", "audioldm2-music"], value="audioldm2-music", interactive=True) with gr.Row(): src_prompt = gr.Textbox(label=translations["source_prompt"], lines=2, interactive=True, info=translations["source_prompt_info"], placeholder="A recording of a happy upbeat classical music piece") with gr.Row(): with gr.Column(): audioldm2_sample_rate = gr.Slider(minimum=8000, maximum=96000, label=translations["sr"], info=translations["sr_info"], value=44100, step=1, interactive=True) t_start = gr.Slider(minimum=15, maximum=85, value=45, step=1, label=translations["t_start"], interactive=True, info=translations["t_start_info"]) steps = gr.Slider(value=50, step=1, minimum=10, maximum=300, label=translations["steps_label"], info=translations["steps_info"], interactive=True) with gr.Row(): gr.Markdown(translations["output_audio"]) with gr.Row(): output_audioldm2 = gr.Audio(show_download_button=True, interactive=False, label=translations["output_audio"]) with gr.Row(): refesh_audio.click(fn=change_audios_choices, inputs=[input_audiopath], outputs=[input_audiopath]) drop_audio_file.upload(fn=lambda audio_in: shutil.move(audio_in.name, os.path.join("audios")), inputs=[drop_audio_file], outputs=[input_audiopath]) input_audiopath.change(fn=lambda audio: audio if os.path.isfile(audio) else None, inputs=[input_audiopath], outputs=[display_audio]) with gr.Row(): edit_button.click( fn=run_audioldm2, inputs=[ input_audiopath, output_audiopath, export_audio_format, audioldm2_sample_rate, audioldm2_model, src_prompt, tar_prompt, steps, cfg_scale_src, cfg_scale_tar, t_start, save_compute ], outputs=[output_audioldm2], api_name="audioldm2" ) with gr.TabItem(translations["audio_effects"], visible=configs.get("effects_tab", True)): gr.Markdown(translations["apply_audio_effects"]) with gr.Row(): gr.Markdown(translations["audio_effects_edit"]) with gr.Row(): with gr.Column(): with gr.Row(): reverb_check_box = gr.Checkbox(label=translations["reverb"], value=False, interactive=True) chorus_check_box = gr.Checkbox(label=translations["chorus"], value=False, interactive=True) delay_check_box = gr.Checkbox(label=translations["delay"], value=False, interactive=True) phaser_check_box = gr.Checkbox(label=translations["phaser"], value=False, interactive=True) compressor_check_box = gr.Checkbox(label=translations["compressor"], value=False, interactive=True) more_options = gr.Checkbox(label=translations["more_option"], value=False, interactive=True) with gr.Row(): with gr.Accordion(translations["input_output"], open=False): with gr.Row(): upload_audio = gr.File(label=translations["drop_audio"], file_types=[".wav", ".mp3", ".flac", ".ogg", ".opus", ".m4a", ".mp4", ".aac", ".alac", ".wma", ".aiff", ".webm", ".ac3"]) with gr.Row(): audio_in_path = gr.Dropdown(label=translations["input_audio"], value="", choices=paths_for_files, info=translations["provide_audio"], interactive=True, allow_custom_value=True) audio_out_path = gr.Textbox(label=translations["output_audio"], value="audios/audio_effects.wav", placeholder="audios/audio_effects.wav", info=translations["provide_output"], interactive=True) with gr.Row(): with gr.Column(): audio_combination = gr.Checkbox(label=translations["merge_instruments"], value=False, interactive=True) audio_combination_input = gr.Dropdown(label=translations["input_audio"], value="", choices=paths_for_files, info=translations["provide_audio"], interactive=True, allow_custom_value=True, visible=audio_combination.value) with gr.Row(): audio_effects_refesh = gr.Button(translations["refesh"]) with gr.Row(): audio_output_format = gr.Radio(label=translations["export_format"], info=translations["export_info"], choices=["wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3"], value="wav", interactive=True) with gr.Row(): apply_effects_button = gr.Button(translations["apply"], variant="primary", scale=2) with gr.Row(): with gr.Column(): with gr.Row(): with gr.Accordion(translations["reverb"], open=False, visible=reverb_check_box.value) as reverb_accordion: reverb_freeze_mode = gr.Checkbox(label=translations["reverb_freeze"], info=translations["reverb_freeze_info"], value=False, interactive=True) reverb_room_size = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.15, label=translations["room_size"], info=translations["room_size_info"], interactive=True) reverb_damping = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.7, label=translations["damping"], info=translations["damping_info"], interactive=True) reverb_wet_level = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.2, label=translations["wet_level"], info=translations["wet_level_info"], interactive=True) reverb_dry_level = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.8, label=translations["dry_level"], info=translations["dry_level_info"], interactive=True) reverb_width = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label=translations["width"], info=translations["width_info"], interactive=True) with gr.Row(): with gr.Accordion(translations["chorus"], open=False, visible=chorus_check_box.value) as chorus_accordion: chorus_depth = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.5, label=translations["chorus_depth"], info=translations["chorus_depth_info"], interactive=True) chorus_rate_hz = gr.Slider(minimum=0.1, maximum=10, step=0.1, value=1.5, label=translations["chorus_rate_hz"], info=translations["chorus_rate_hz_info"], interactive=True) chorus_mix = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.5, label=translations["chorus_mix"], info=translations["chorus_mix_info"], interactive=True) chorus_centre_delay_ms = gr.Slider(minimum=0, maximum=50, step=1, value=10, label=translations["chorus_centre_delay_ms"], info=translations["chorus_centre_delay_ms_info"], interactive=True) chorus_feedback = gr.Slider(minimum=-1, maximum=1, step=0.01, value=0, label=translations["chorus_feedback"], info=translations["chorus_feedback_info"], interactive=True) with gr.Row(): with gr.Accordion(translations["delay"], open=False, visible=delay_check_box.value) as delay_accordion: delay_second = gr.Slider(minimum=0, maximum=5, step=0.01, value=0.5, label=translations["delay_seconds"], info=translations["delay_seconds_info"], interactive=True) delay_feedback = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.5, label=translations["delay_feedback"], info=translations["delay_feedback_info"], interactive=True) delay_mix = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.5, label=translations["delay_mix"], info=translations["delay_mix_info"], interactive=True) with gr.Column(): with gr.Row(): with gr.Accordion(translations["more_option"], open=False, visible=more_options.value) as more_accordion: with gr.Row(): fade = gr.Checkbox(label=translations["fade"], value=False, interactive=True) bass_or_treble = gr.Checkbox(label=translations["bass_or_treble"], value=False, interactive=True) limiter = gr.Checkbox(label=translations["limiter"], value=False, interactive=True) resample_checkbox = gr.Checkbox(label=translations["resample"], value=False, interactive=True) with gr.Row(): distortion_checkbox = gr.Checkbox(label=translations["distortion"], value=False, interactive=True) gain_checkbox = gr.Checkbox(label=translations["gain"], value=False, interactive=True) bitcrush_checkbox = gr.Checkbox(label=translations["bitcrush"], value=False, interactive=True) clipping_checkbox = gr.Checkbox(label=translations["clipping"], value=False, interactive=True) with gr.Accordion(translations["fade"], open=True, visible=fade.value) as fade_accordion: with gr.Row(): fade_in = gr.Slider(minimum=0, maximum=10000, step=100, value=0, label=translations["fade_in"], info=translations["fade_in_info"], interactive=True) fade_out = gr.Slider(minimum=0, maximum=10000, step=100, value=0, label=translations["fade_out"], info=translations["fade_out_info"], interactive=True) with gr.Accordion(translations["bass_or_treble"], open=True, visible=bass_or_treble.value) as bass_treble_accordion: with gr.Row(): bass_boost = gr.Slider(minimum=0, maximum=20, step=1, value=0, label=translations["bass_boost"], info=translations["bass_boost_info"], interactive=True) bass_frequency = gr.Slider(minimum=20, maximum=200, step=10, value=100, label=translations["bass_frequency"], info=translations["bass_frequency_info"], interactive=True) with gr.Row(): treble_boost = gr.Slider(minimum=0, maximum=20, step=1, value=0, label=translations["treble_boost"], info=translations["treble_boost_info"], interactive=True) treble_frequency = gr.Slider(minimum=1000, maximum=10000, step=500, value=3000, label=translations["treble_frequency"], info=translations["treble_frequency_info"], interactive=True) with gr.Accordion(translations["limiter"], open=True, visible=limiter.value) as limiter_accordion: with gr.Row(): limiter_threashold_db = gr.Slider(minimum=-60, maximum=0, step=1, value=-1, label=translations["limiter_threashold_db"], info=translations["limiter_threashold_db_info"], interactive=True) limiter_release_ms = gr.Slider(minimum=10, maximum=1000, step=1, value=100, label=translations["limiter_release_ms"], info=translations["limiter_release_ms_info"], interactive=True) with gr.Column(): pitch_shift_semitones = gr.Slider(minimum=-20, maximum=20, step=1, value=0, label=translations["pitch"], info=translations["pitch_info"], interactive=True) audio_effect_resample_sr = gr.Slider(minimum=0, maximum=96000, step=1, value=0, label=translations["resample"], info=translations["resample_info"], interactive=True, visible=resample_checkbox.value) distortion_drive_db = gr.Slider(minimum=0, maximum=50, step=1, value=20, label=translations["distortion"], info=translations["distortion_info"], interactive=True, visible=distortion_checkbox.value) gain_db = gr.Slider(minimum=-60, maximum=60, step=1, value=0, label=translations["gain"], info=translations["gain_info"], interactive=True, visible=gain_checkbox.value) clipping_threashold_db = gr.Slider(minimum=-60, maximum=0, step=1, value=-1, label=translations["clipping_threashold_db"], info=translations["clipping_threashold_db_info"], interactive=True, visible=clipping_checkbox.value) bitcrush_bit_depth = gr.Slider(minimum=1, maximum=24, step=1, value=16, label=translations["bitcrush_bit_depth"], info=translations["bitcrush_bit_depth_info"], interactive=True, visible=bitcrush_checkbox.value) with gr.Row(): with gr.Accordion(translations["phaser"], open=False, visible=phaser_check_box.value) as phaser_accordion: phaser_depth = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.5, label=translations["phaser_depth"], info=translations["phaser_depth_info"], interactive=True) phaser_rate_hz = gr.Slider(minimum=0.1, maximum=10, step=0.1, value=1, label=translations["phaser_rate_hz"], info=translations["phaser_rate_hz_info"], interactive=True) phaser_mix = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.5, label=translations["phaser_mix"], info=translations["phaser_mix_info"], interactive=True) phaser_centre_frequency_hz = gr.Slider(minimum=50, maximum=5000, step=10, value=1000, label=translations["phaser_centre_frequency_hz"], info=translations["phaser_centre_frequency_hz_info"], interactive=True) phaser_feedback = gr.Slider(minimum=-1, maximum=1, step=0.01, value=0, label=translations["phaser_feedback"], info=translations["phaser_feedback_info"], interactive=True) with gr.Row(): with gr.Accordion(translations["compressor"], open=False, visible=compressor_check_box.value) as compressor_accordion: compressor_threashold_db = gr.Slider(minimum=-60, maximum=0, step=1, value=-20, label=translations["compressor_threashold_db"], info=translations["compressor_threashold_db_info"], interactive=True) compressor_ratio = gr.Slider(minimum=1, maximum=20, step=0.1, value=1, label=translations["compressor_ratio"], info=translations["compressor_ratio_info"], interactive=True) compressor_attack_ms = gr.Slider(minimum=0.1, maximum=100, step=0.1, value=10, label=translations["compressor_attack_ms"], info=translations["compressor_attack_ms_info"], interactive=True) compressor_release_ms = gr.Slider(minimum=10, maximum=1000, step=1, value=100, label=translations["compressor_release_ms"], info=translations["compressor_release_ms_info"], interactive=True) with gr.Row(): gr.Markdown(translations["output_audio"]) with gr.Row(): audio_play_input = gr.Audio(show_download_button=True, interactive=False, label=translations["input_audio"]) audio_play_output = gr.Audio(show_download_button=True, interactive=False, label=translations["output_audio"]) with gr.Row(): reverb_check_box.change(fn=visible, inputs=[reverb_check_box], outputs=[reverb_accordion]) chorus_check_box.change(fn=visible, inputs=[chorus_check_box], outputs=[chorus_accordion]) delay_check_box.change(fn=visible, inputs=[delay_check_box], outputs=[delay_accordion]) with gr.Row(): compressor_check_box.change(fn=visible, inputs=[compressor_check_box], outputs=[compressor_accordion]) phaser_check_box.change(fn=visible, inputs=[phaser_check_box], outputs=[phaser_accordion]) more_options.change(fn=visible, inputs=[more_options], outputs=[more_accordion]) with gr.Row(): fade.change(fn=visible, inputs=[fade], outputs=[fade_accordion]) bass_or_treble.change(fn=visible, inputs=[bass_or_treble], outputs=[bass_treble_accordion]) limiter.change(fn=visible, inputs=[limiter], outputs=[limiter_accordion]) resample_checkbox.change(fn=visible, inputs=[resample_checkbox], outputs=[audio_effect_resample_sr]) with gr.Row(): distortion_checkbox.change(fn=visible, inputs=[distortion_checkbox], outputs=[distortion_drive_db]) gain_checkbox.change(fn=visible, inputs=[gain_checkbox], outputs=[gain_db]) clipping_checkbox.change(fn=visible, inputs=[clipping_checkbox], outputs=[clipping_threashold_db]) bitcrush_checkbox.change(fn=visible, inputs=[bitcrush_checkbox], outputs=[bitcrush_bit_depth]) with gr.Row(): upload_audio.upload(fn=lambda audio_in: shutil.move(audio_in.name, os.path.join("audios")), inputs=[upload_audio], outputs=[audio_in_path]) audio_in_path.change(fn=lambda audio: audio if audio else None, inputs=[audio_in_path], outputs=[audio_play_input]) audio_effects_refesh.click(fn=lambda a, b: [change_audios_choices(a), change_audios_choices(b)], inputs=[audio_in_path, audio_combination_input], outputs=[audio_in_path, audio_combination_input]) with gr.Row(): more_options.change(fn=lambda: [False]*8, inputs=[], outputs=[fade, bass_or_treble, limiter, resample_checkbox, distortion_checkbox, gain_checkbox, clipping_checkbox, bitcrush_checkbox]) audio_combination.change(fn=visible, inputs=[audio_combination], outputs=[audio_combination_input]) with gr.Row(): apply_effects_button.click( fn=audio_effects, inputs=[ audio_in_path, audio_out_path, resample_checkbox, audio_effect_resample_sr, chorus_depth, chorus_rate_hz, chorus_mix, chorus_centre_delay_ms, chorus_feedback, distortion_drive_db, reverb_room_size, reverb_damping, reverb_wet_level, reverb_dry_level, reverb_width, reverb_freeze_mode, pitch_shift_semitones, delay_second, delay_feedback, delay_mix, compressor_threashold_db, compressor_ratio, compressor_attack_ms, compressor_release_ms, limiter_threashold_db, limiter_release_ms, gain_db, bitcrush_bit_depth, clipping_threashold_db, phaser_rate_hz, phaser_depth, phaser_centre_frequency_hz, phaser_feedback, phaser_mix, bass_boost, bass_frequency, treble_boost, treble_frequency, fade_in, fade_out, audio_output_format, chorus_check_box, distortion_checkbox, reverb_check_box, delay_check_box, compressor_check_box, limiter, gain_checkbox, bitcrush_checkbox, clipping_checkbox, phaser_check_box, bass_or_treble, fade, audio_combination, audio_combination_input ], outputs=[audio_play_output], api_name="audio_effects" ) with gr.TabItem(translations["createdataset"], visible=configs.get("create_dataset_tab", True)): gr.Markdown(translations["create_dataset_markdown"]) with gr.Row(): gr.Markdown(translations["create_dataset_markdown_2"]) with gr.Row(): dataset_url = gr.Textbox(label=translations["url_audio"], info=translations["create_dataset_url"], value="", placeholder="https://www.youtube.com/...", interactive=True) output_dataset = gr.Textbox(label=translations["output_data"], info=translations["output_data_info"], value="dataset", placeholder="dataset", interactive=True) with gr.Row(): with gr.Column(): with gr.Group(): with gr.Row(): separator_reverb = gr.Checkbox(label=translations["dereveb_audio"], value=False, interactive=True) denoise_mdx = gr.Checkbox(label=translations["denoise"], value=False, interactive=True) with gr.Row(): kim_vocal_version = gr.Radio(label=translations["model_ver"], info=translations["model_ver_info"], choices=["Version-1", "Version-2"], value="Version-2", interactive=True) kim_vocal_overlap = gr.Radio(label=translations["overlap"], info=translations["overlap_info"], choices=["0.25", "0.5", "0.75", "0.99"], value="0.25", interactive=True) with gr.Row(): kim_vocal_hop_length = gr.Slider(label="Hop length", info=translations["hop_length_info"], minimum=1, maximum=8192, value=1024, step=1, interactive=True) kim_vocal_batch_size = gr.Slider(label=translations["batch_size"], info=translations["mdx_batch_size_info"], minimum=1, maximum=64, value=1, step=1, interactive=True) with gr.Row(): kim_vocal_segments_size = gr.Slider(label=translations["segments_size"], info=translations["segments_size_info"], minimum=32, maximum=3072, value=256, step=32, interactive=True) with gr.Row(): sample_rate0 = gr.Slider(minimum=8000, maximum=96000, step=1, value=44100, label=translations["sr"], info=translations["sr_info"], interactive=True) with gr.Column(): create_button = gr.Button(translations["createdataset"], variant="primary", scale=2, min_width=4000) with gr.Group(): with gr.Row(): clean_audio = gr.Checkbox(label=translations["clear_audio"], value=False, interactive=True) skip = gr.Checkbox(label=translations["skip"], value=False, interactive=True) with gr.Row(): dataset_clean_strength = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.5, label=translations["clean_strength"], info=translations["clean_strength_info"], interactive=True, visible=clean_audio.value) with gr.Row(): skip_start = gr.Textbox(label=translations["skip_start"], info=translations["skip_start_info"], value="", placeholder="0,...", interactive=True, visible=skip.value) skip_end = gr.Textbox(label=translations["skip_end"], info=translations["skip_end_info"], value="", placeholder="0,...", interactive=True, visible=skip.value) create_dataset_info = gr.Textbox(label=translations["create_dataset_info"], value="", interactive=False) with gr.Row(): clean_audio.change(fn=visible, inputs=[clean_audio], outputs=[dataset_clean_strength]) skip.change(fn=lambda a: [valueEmpty_visible1(a)]*2, inputs=[skip], outputs=[skip_start, skip_end]) with gr.Row(): create_button.click( fn=create_dataset, inputs=[ dataset_url, output_dataset, clean_audio, dataset_clean_strength, separator_reverb, kim_vocal_version, kim_vocal_overlap, kim_vocal_segments_size, denoise_mdx, skip, skip_start, skip_end, kim_vocal_hop_length, kim_vocal_batch_size, sample_rate0 ], outputs=[create_dataset_info], api_name="create_dataset" ) with gr.TabItem(translations["training_model"], visible=configs.get("training_tab", True)): gr.Markdown(f"## {translations['training_model']}") with gr.Row(): gr.Markdown(translations["training_markdown"]) with gr.Row(): with gr.Column(): with gr.Row(): with gr.Column(): training_name = gr.Textbox(label=translations["modelname"], info=translations["training_model_name"], value="", placeholder=translations["modelname"], interactive=True) training_sr = gr.Radio(label=translations["sample_rate"], info=translations["sample_rate_info"], choices=["32k", "40k", "48k"], value="48k", interactive=True) training_ver = gr.Radio(label=translations["training_version"], info=translations["training_version_info"], choices=["v1", "v2"], value="v2", interactive=True) with gr.Row(): clean_dataset = gr.Checkbox(label=translations["clear_dataset"], value=False, interactive=True) preprocess_cut = gr.Checkbox(label=translations["split_audio"], value=True, interactive=True) process_effects = gr.Checkbox(label=translations["preprocess_effect"], value=False, interactive=True) checkpointing1 = gr.Checkbox(label=translations["memory_efficient_training"], value=False, interactive=True) training_f0 = gr.Checkbox(label=translations["training_pitch"], value=True, interactive=True) upload = gr.Checkbox(label=translations["upload_dataset"], value=False, interactive=True) with gr.Row(): clean_dataset_strength = gr.Slider(label=translations["clean_strength"], info=translations["clean_strength_info"], minimum=0, maximum=1, value=0.7, step=0.1, interactive=True, visible=clean_dataset.value) with gr.Column(): preprocess_button = gr.Button(translations["preprocess_button"], scale=2) upload_dataset = gr.Files(label=translations["drop_audio"], file_types=[".wav", ".mp3", ".flac", ".ogg", ".opus", ".m4a", ".mp4", ".aac", ".alac", ".wma", ".aiff", ".webm", ".ac3"], visible=upload.value) preprocess_info = gr.Textbox(label=translations["preprocess_info"], value="", interactive=False) with gr.Column(): with gr.Row(): with gr.Column(): with gr.Accordion(label=translations["f0_method"], open=False): with gr.Group(): with gr.Row(): onnx_f0_mode2 = gr.Checkbox(label=translations["f0_onnx_mode"], info=translations["f0_onnx_mode_info"], value=False, interactive=True) unlock_full_method4 = gr.Checkbox(label=translations["f0_unlock"], info=translations["f0_unlock_info"], value=False, interactive=True) extract_method = gr.Radio(label=translations["f0_method"], info=translations["f0_method_info"], choices=method_f0, value="rmvpe", interactive=True) extract_hop_length = gr.Slider(label="Hop length", info=translations["hop_length_info"], minimum=1, maximum=512, value=128, step=1, interactive=True, visible=False) with gr.Accordion(label=translations["hubert_model"], open=False): with gr.Group(): embed_mode2 = gr.Radio(label=translations["embed_mode"], info=translations["embed_mode_info"], value="fairseq", choices=embedders_mode, interactive=True, visible=True) extract_embedders = gr.Radio(label=translations["hubert_model"], info=translations["hubert_info"], choices=embedders_model, value="hubert_base", interactive=True) with gr.Row(): extract_embedders_custom = gr.Textbox(label=translations["modelname"], info=translations["modelname_info"], value="", placeholder="hubert_base", interactive=True, visible=extract_embedders.value == "custom") with gr.Column(): extract_button = gr.Button(translations["extract_button"], scale=2) extract_info = gr.Textbox(label=translations["extract_info"], value="", interactive=False) with gr.Column(): with gr.Row(): with gr.Column(): total_epochs = gr.Slider(label=translations["total_epoch"], info=translations["total_epoch_info"], minimum=1, maximum=10000, value=300, step=1, interactive=True) save_epochs = gr.Slider(label=translations["save_epoch"], info=translations["save_epoch_info"], minimum=1, maximum=10000, value=50, step=1, interactive=True) with gr.Column(): with gr.Row(): index_button = gr.Button(f"3. {translations['create_index']}", variant="primary", scale=2) training_button = gr.Button(f"4. {translations['training_model']}", variant="primary", scale=2) with gr.Row(): with gr.Accordion(label=translations["setting"], open=False): with gr.Row(): index_algorithm = gr.Radio(label=translations["index_algorithm"], info=translations["index_algorithm_info"], choices=["Auto", "Faiss", "KMeans"], value="Auto", interactive=True) with gr.Row(): custom_dataset = gr.Checkbox(label=translations["custom_dataset"], info=translations["custom_dataset_info"], value=False, interactive=True) overtraining_detector = gr.Checkbox(label=translations["overtraining_detector"], info=translations["overtraining_detector_info"], value=False, interactive=True) clean_up = gr.Checkbox(label=translations["cleanup_training"], info=translations["cleanup_training_info"], value=False, interactive=True) cache_in_gpu = gr.Checkbox(label=translations["cache_in_gpu"], info=translations["cache_in_gpu_info"], value=False, interactive=True) with gr.Column(): dataset_path = gr.Textbox(label=translations["dataset_folder"], value="dataset", interactive=True, visible=custom_dataset.value) with gr.Column(): threshold = gr.Slider(minimum=1, maximum=100, value=50, step=1, label=translations["threshold"], interactive=True, visible=overtraining_detector.value) with gr.Accordion(translations["setting_cpu_gpu"], open=False): with gr.Column(): gpu_number = gr.Textbox(label=translations["gpu_number"], value=str("-".join(map(str, range(torch.cuda.device_count()))) if torch.cuda.is_available() else "-"), info=translations["gpu_number_info"], interactive=True) gpu_info = gr.Textbox(label=translations["gpu_info"], value=get_gpu_info(), info=translations["gpu_info_2"], interactive=False) cpu_core = gr.Slider(label=translations["cpu_core"], info=translations["cpu_core_info"], minimum=0, maximum=cpu_count(), value=cpu_count(), step=1, interactive=True) train_batch_size = gr.Slider(label=translations["batch_size"], info=translations["batch_size_info"], minimum=1, maximum=64, value=8, step=1, interactive=True) with gr.Row(): save_only_latest = gr.Checkbox(label=translations["save_only_latest"], info=translations["save_only_latest_info"], value=True, interactive=True) save_every_weights = gr.Checkbox(label=translations["save_every_weights"], info=translations["save_every_weights_info"], value=True, interactive=True) not_use_pretrain = gr.Checkbox(label=translations["not_use_pretrain_2"], info=translations["not_use_pretrain_info"], value=False, interactive=True) custom_pretrain = gr.Checkbox(label=translations["custom_pretrain"], info=translations["custom_pretrain_info"], value=False, interactive=True) with gr.Row(): vocoders = gr.Radio(label=translations["vocoder"], info=translations["vocoder_info"], choices=["Default", "MRF-HiFi-GAN", "RefineGAN"], value="Default", interactive=True) with gr.Row(): deterministic = gr.Checkbox(label=translations["deterministic"], info=translations["deterministic_info"], value=False, interactive=True) benchmark = gr.Checkbox(label=translations["benchmark"], info=translations["benchmark_info"], value=False, interactive=True) with gr.Row(): model_author = gr.Textbox(label=translations["training_author"], info=translations["training_author_info"], value="", placeholder=translations["training_author"], interactive=True) with gr.Row(): with gr.Column(): with gr.Accordion(translations["custom_pretrain_info"], open=False, visible=custom_pretrain.value and not not_use_pretrain.value) as pretrain_setting: pretrained_D = gr.Dropdown(label=translations["pretrain_file"].format(dg="D"), choices=pretrainedD, value=pretrainedD[0] if len(pretrainedD) > 0 else '', interactive=True, allow_custom_value=True) pretrained_G = gr.Dropdown(label=translations["pretrain_file"].format(dg="G"), choices=pretrainedG, value=pretrainedG[0] if len(pretrainedG) > 0 else '', interactive=True, allow_custom_value=True) refesh_pretrain = gr.Button(translations["refesh"], scale=2) with gr.Row(): training_info = gr.Textbox(label=translations["train_info"], value="", interactive=False) with gr.Row(): with gr.Column(): with gr.Accordion(translations["export_model"], open=False): with gr.Row(): model_file= gr.Dropdown(label=translations["model_name"], choices=model_name, value=model_name[0] if len(model_name) >= 1 else "", interactive=True, allow_custom_value=True) index_file = gr.Dropdown(label=translations["index_path"], choices=index_path, value=index_path[0] if len(index_path) >= 1 else "", interactive=True, allow_custom_value=True) with gr.Row(): refesh_file = gr.Button(f"1. {translations['refesh']}", scale=2) zip_model = gr.Button(translations["zip_model"], variant="primary", scale=2) with gr.Row(): zip_output = gr.File(label=translations["output_zip"], file_types=[".zip"], interactive=False, visible=False) with gr.Row(): vocoders.change(fn=pitch_guidance_lock, inputs=[vocoders], outputs=[training_f0]) training_f0.change(fn=vocoders_lock, inputs=[training_f0, vocoders], outputs=[vocoders]) unlock_full_method4.change(fn=unlock_f0, inputs=[unlock_full_method4], outputs=[extract_method]) with gr.Row(): refesh_file.click(fn=change_models_choices, inputs=[], outputs=[model_file, index_file]) zip_model.click(fn=zip_file, inputs=[training_name, model_file, index_file], outputs=[zip_output]) dataset_path.change(fn=lambda folder: os.makedirs(folder, exist_ok=True), inputs=[dataset_path], outputs=[]) with gr.Row(): upload.change(fn=visible, inputs=[upload], outputs=[upload_dataset]) overtraining_detector.change(fn=visible, inputs=[overtraining_detector], outputs=[threshold]) clean_dataset.change(fn=visible, inputs=[clean_dataset], outputs=[clean_dataset_strength]) with gr.Row(): custom_dataset.change(fn=lambda custom_dataset: [visible(custom_dataset), "dataset"],inputs=[custom_dataset], outputs=[dataset_path, dataset_path]) training_ver.change(fn=unlock_vocoder, inputs=[training_ver, vocoders], outputs=[vocoders]) vocoders.change(fn=unlock_ver, inputs=[training_ver, vocoders], outputs=[training_ver]) upload_dataset.upload( fn=lambda files, folder: [shutil.move(f.name, os.path.join(folder, os.path.split(f.name)[1])) for f in files] if folder != "" else gr_warning(translations["dataset_folder1"]), inputs=[upload_dataset, dataset_path], outputs=[], api_name="upload_dataset" ) with gr.Row(): not_use_pretrain.change(fn=lambda a, b: visible(a and not b), inputs=[custom_pretrain, not_use_pretrain], outputs=[pretrain_setting]) custom_pretrain.change(fn=lambda a, b: visible(a and not b), inputs=[custom_pretrain, not_use_pretrain], outputs=[pretrain_setting]) refesh_pretrain.click(fn=change_pretrained_choices, inputs=[], outputs=[pretrained_D, pretrained_G]) with gr.Row(): preprocess_button.click( fn=preprocess, inputs=[ training_name, training_sr, cpu_core, preprocess_cut, process_effects, dataset_path, clean_dataset, clean_dataset_strength ], outputs=[preprocess_info], api_name="preprocess" ) with gr.Row(): embed_mode2.change(fn=visible_embedders, inputs=[embed_mode2], outputs=[extract_embedders]) extract_method.change(fn=hoplength_show, inputs=[extract_method], outputs=[extract_hop_length]) extract_embedders.change(fn=lambda extract_embedders: visible(extract_embedders == "custom"), inputs=[extract_embedders], outputs=[extract_embedders_custom]) with gr.Row(): extract_button.click( fn=extract, inputs=[ training_name, training_ver, extract_method, training_f0, extract_hop_length, cpu_core, gpu_number, training_sr, extract_embedders, extract_embedders_custom, onnx_f0_mode2, embed_mode2 ], outputs=[extract_info], api_name="extract" ) with gr.Row(): index_button.click( fn=create_index, inputs=[ training_name, training_ver, index_algorithm ], outputs=[training_info], api_name="create_index" ) with gr.Row(): training_button.click( fn=training, inputs=[ training_name, training_ver, save_epochs, save_only_latest, save_every_weights, total_epochs, training_sr, train_batch_size, gpu_number, training_f0, not_use_pretrain, custom_pretrain, pretrained_G, pretrained_D, overtraining_detector, threshold, clean_up, cache_in_gpu, model_author, vocoders, checkpointing1, deterministic, benchmark ], outputs=[training_info], api_name="training_model" ) with gr.TabItem(translations["fushion"], visible=configs.get("fushion_tab", True)): gr.Markdown(translations["fushion_markdown"]) with gr.Row(): gr.Markdown(translations["fushion_markdown_2"]) with gr.Row(): name_to_save = gr.Textbox(label=translations["modelname"], placeholder="Model.pth", value="", max_lines=1, interactive=True) with gr.Row(): fushion_button = gr.Button(translations["fushion"], variant="primary", scale=4) with gr.Column(): with gr.Row(): model_a = gr.File(label=f"{translations['model_name']} 1", file_types=[".pth", ".onnx"]) model_b = gr.File(label=f"{translations['model_name']} 2", file_types=[".pth", ".onnx"]) with gr.Row(): model_path_a = gr.Textbox(label=f"{translations['model_path']} 1", value="", placeholder="assets/weights/Model_1.pth") model_path_b = gr.Textbox(label=f"{translations['model_path']} 2", value="", placeholder="assets/weights/Model_2.pth") with gr.Row(): ratio = gr.Slider(minimum=0, maximum=1, label=translations["model_ratio"], info=translations["model_ratio_info"], value=0.5, interactive=True) with gr.Row(): output_model = gr.File(label=translations["output_model_path"], file_types=[".pth", ".onnx"], interactive=False, visible=False) with gr.Row(): model_a.upload(fn=lambda model: shutil.move(model.name, os.path.join("assets", "weights")), inputs=[model_a], outputs=[model_path_a]) model_b.upload(fn=lambda model: shutil.move(model.name, os.path.join("assets", "weights")), inputs=[model_b], outputs=[model_path_b]) with gr.Row(): fushion_button.click( fn=fushion_model, inputs=[ name_to_save, model_path_a, model_path_b, ratio ], outputs=[name_to_save, output_model], api_name="fushion_model" ) fushion_button.click(fn=lambda: visible(True), inputs=[], outputs=[output_model]) with gr.TabItem(translations["read_model"], visible=configs.get("read_tab", True)): gr.Markdown(translations["read_model_markdown"]) with gr.Row(): gr.Markdown(translations["read_model_markdown_2"]) with gr.Row(): model = gr.File(label=translations["drop_model"], file_types=[".pth", ".onnx"]) with gr.Row(): read_button = gr.Button(translations["readmodel"], variant="primary", scale=2) with gr.Column(): model_path = gr.Textbox(label=translations["model_path"], value="", placeholder="assets/weights/Model.pth", info=translations["model_path_info"], interactive=True) output_info = gr.Textbox(label=translations["modelinfo"], value="", interactive=False, scale=6) with gr.Row(): model.upload(fn=lambda model: shutil.move(model.name, os.path.join("assets", "weights")), inputs=[model], outputs=[model_path]) read_button.click( fn=model_info, inputs=[model_path], outputs=[output_info], api_name="read_model" ) with gr.TabItem(translations["convert_model"], visible=configs.get("onnx_tab", True)): gr.Markdown(translations["pytorch2onnx"]) with gr.Row(): gr.Markdown(translations["pytorch2onnx_markdown"]) with gr.Row(): model_pth_upload = gr.File(label=translations["drop_model"], file_types=[".pth"]) with gr.Row(): convert_onnx = gr.Button(translations["convert_model"], variant="primary", scale=2) with gr.Row(): model_pth_path = gr.Textbox(label=translations["model_path"], value="", placeholder="assets/weights/Model.pth", info=translations["model_path_info"], interactive=True) with gr.Row(): output_model2 = gr.File(label=translations["output_model_path"], file_types=[".pth", ".onnx"], interactive=False, visible=False) with gr.Row(): model_pth_upload.upload(fn=lambda model_pth_upload: shutil.move(model_pth_upload.name, os.path.join("assets", "weights")), inputs=[model_pth_upload], outputs=[model_pth_path]) convert_onnx.click( fn=onnx_export, inputs=[model_pth_path], outputs=[output_model2, output_info], api_name="model_onnx_export" ) convert_onnx.click(fn=lambda: visible(True), inputs=[], outputs=[output_model2]) with gr.TabItem(translations["downloads"], visible=configs.get("downloads_tab", True)): gr.Markdown(translations["download_markdown"]) with gr.Row(): gr.Markdown(translations["download_markdown_2"]) with gr.Row(): with gr.Accordion(translations["model_download"], open=True): with gr.Row(): downloadmodel = gr.Radio(label=translations["model_download_select"], choices=[translations["download_url"], translations["download_from_csv"], translations["search_models"], translations["upload"]], interactive=True, value=translations["download_url"]) with gr.Row(): gr.Markdown("___") with gr.Column(): with gr.Row(): url_input = gr.Textbox(label=translations["model_url"], value="", placeholder="https://...", scale=6) download_model_name = gr.Textbox(label=translations["modelname"], value="", placeholder=translations["modelname"], scale=2) url_download = gr.Button(value=translations["downloads"], scale=2) with gr.Column(): model_browser = gr.Dropdown(choices=models.keys(), label=translations["model_warehouse"], scale=8, allow_custom_value=True, visible=False) download_from_browser = gr.Button(value=translations["get_model"], scale=2, variant="primary", visible=False) with gr.Column(): search_name = gr.Textbox(label=translations["name_to_search"], placeholder=translations["modelname"], interactive=True, scale=8, visible=False) search = gr.Button(translations["search_2"], scale=2, visible=False) search_dropdown = gr.Dropdown(label=translations["select_download_model"], value="", choices=[], allow_custom_value=True, interactive=False, visible=False) download = gr.Button(translations["downloads"], variant="primary", visible=False) with gr.Column(): model_upload = gr.File(label=translations["drop_model"], file_types=[".pth", ".onnx", ".index", ".zip"], visible=False) with gr.Row(): with gr.Accordion(translations["download_pretrained_2"], open=False): with gr.Row(): pretrain_download_choices = gr.Radio(label=translations["model_download_select"], choices=[translations["download_url"], translations["list_model"], translations["upload"]], value=translations["download_url"], interactive=True) with gr.Row(): gr.Markdown("___") with gr.Column(): with gr.Row(): pretrainD = gr.Textbox(label=translations["pretrained_url"].format(dg="D"), value="", info=translations["only_huggingface"], placeholder="https://...", interactive=True, scale=4) pretrainG = gr.Textbox(label=translations["pretrained_url"].format(dg="G"), value="", info=translations["only_huggingface"], placeholder="https://...", interactive=True, scale=4) download_pretrain_button = gr.Button(translations["downloads"], scale=2) with gr.Column(): with gr.Row(): pretrain_choices = gr.Dropdown(label=translations["select_pretrain"], info=translations["select_pretrain_info"], choices=list(fetch_pretrained_data().keys()), value="Titan_Medium", allow_custom_value=True, interactive=True, scale=6, visible=False) sample_rate_pretrain = gr.Dropdown(label=translations["pretrain_sr"], info=translations["pretrain_sr"], choices=["48k", "40k", "32k"], value="48k", interactive=True, visible=False) download_pretrain_choices_button = gr.Button(translations["downloads"], scale=2, variant="primary", visible=False) with gr.Row(): pretrain_upload_g = gr.File(label=translations["drop_pretrain"].format(dg="G"), file_types=[".pth"], visible=False) pretrain_upload_d = gr.File(label=translations["drop_pretrain"].format(dg="D"), file_types=[".pth"], visible=False) with gr.Row(): url_download.click( fn=download_model, inputs=[ url_input, download_model_name ], outputs=[url_input], api_name="download_model" ) download_from_browser.click( fn=lambda model: download_model(models[model], model), inputs=[model_browser], outputs=[model_browser], api_name="download_browser" ) with gr.Row(): downloadmodel.change(fn=change_download_choices, inputs=[downloadmodel], outputs=[url_input, download_model_name, url_download, model_browser, download_from_browser, search_name, search, search_dropdown, download, model_upload]) search.click(fn=search_models, inputs=[search_name], outputs=[search_dropdown, download]) model_upload.upload(fn=save_drop_model, inputs=[model_upload], outputs=[model_upload]) download.click( fn=lambda model: download_model(model_options[model], model), inputs=[search_dropdown], outputs=[search_dropdown], api_name="search_models" ) with gr.Row(): pretrain_download_choices.change(fn=change_download_pretrained_choices, inputs=[pretrain_download_choices], outputs=[pretrainD, pretrainG, download_pretrain_button, pretrain_choices, sample_rate_pretrain, download_pretrain_choices_button, pretrain_upload_d, pretrain_upload_g]) pretrain_choices.change(fn=update_sample_rate_dropdown, inputs=[pretrain_choices], outputs=[sample_rate_pretrain]) with gr.Row(): download_pretrain_button.click( fn=download_pretrained_model, inputs=[ pretrain_download_choices, pretrainD, pretrainG ], outputs=[pretrainD], api_name="download_pretrain_link" ) download_pretrain_choices_button.click( fn=download_pretrained_model, inputs=[ pretrain_download_choices, pretrain_choices, sample_rate_pretrain ], outputs=[pretrain_choices], api_name="download_pretrain_choices" ) pretrain_upload_g.upload( fn=lambda pretrain_upload_g: shutil.move(pretrain_upload_g.name, os.path.join("assets", "models", "pretrained_custom")), inputs=[pretrain_upload_g], outputs=[], api_name="upload_pretrain_g" ) pretrain_upload_d.upload( fn=lambda pretrain_upload_d: shutil.move(pretrain_upload_d.name, os.path.join("assets", "models", "pretrained_custom")), inputs=[pretrain_upload_d], outputs=[], api_name="upload_pretrain_d" ) with gr.TabItem(translations["f0_extractor_tab"], visible=configs.get("f0_extractor_tab", True)): gr.Markdown(translations["f0_extractor_markdown"]) with gr.Row(): gr.Markdown(translations["f0_extractor_markdown_2"]) with gr.Row(): extractor_button = gr.Button(translations["extract_button"].replace("2. ", ""), variant="primary") with gr.Row(): with gr.Column(): upload_audio_file = gr.File(label=translations["drop_audio"], file_types=[".wav", ".mp3", ".flac", ".ogg", ".opus", ".m4a", ".mp4", ".aac", ".alac", ".wma", ".aiff", ".webm", ".ac3"]) audioplay = gr.Audio(show_download_button=True, interactive=False, label=translations["input_audio"]) with gr.Column(): with gr.Accordion(translations["f0_method"], open=False): with gr.Group(): onnx_f0_mode3 = gr.Checkbox(label=translations["f0_onnx_mode"], info=translations["f0_onnx_mode_info"], value=False, interactive=True) f0_method_extract = gr.Radio(label=translations["f0_method"], info=translations["f0_method_info"], choices=method_f0, value="rmvpe", interactive=True) with gr.Accordion(translations["audio_path"], open=True): input_audio_path = gr.Dropdown(label=translations["audio_path"], value="", choices=paths_for_files, allow_custom_value=True, interactive=True) refesh_audio_button = gr.Button(translations["refesh"]) with gr.Row(): gr.Markdown("___") with gr.Row(): file_output = gr.File(label="", file_types=[".txt"], interactive=False) image_output = gr.Image(label="", interactive=False, show_download_button=True) with gr.Row(): upload_audio_file.upload(fn=lambda audio_in: shutil.move(audio_in.name, os.path.join("audios")), inputs=[upload_audio_file], outputs=[input_audio_path]) input_audio_path.change(fn=lambda audio: audio if os.path.isfile(audio) else None, inputs=[input_audio_path], outputs=[audioplay]) refesh_audio_button.click(fn=change_audios_choices, inputs=[input_audio_path], outputs=[input_audio_path]) with gr.Row(): extractor_button.click( fn=f0_extract, inputs=[ input_audio_path, f0_method_extract, onnx_f0_mode3 ], outputs=[file_output, image_output], api_name="f0_extract" ) with gr.TabItem(translations["settings"], visible=configs.get("settings_tab", True)): gr.Markdown(translations["settings_markdown"]) with gr.Row(): gr.Markdown(translations["settings_markdown_2"]) with gr.Row(): toggle_button = gr.Button(translations["change_light_dark"], variant="secondary", scale=2) with gr.Row(): with gr.Column(): language_dropdown = gr.Dropdown(label=translations["lang"], interactive=True, info=translations["lang_restart"], choices=configs.get("support_language", "vi-VN"), value=language) change_lang = gr.Button(translations["change_lang"], variant="primary", scale=2) with gr.Column(): theme_dropdown = gr.Dropdown(label=translations["theme"], interactive=True, info=translations["theme_restart"], choices=configs.get("themes", theme), value=theme, allow_custom_value=True) changetheme = gr.Button(translations["theme_button"], variant="primary", scale=2) with gr.Row(): with gr.Column(): fp_choice = gr.Radio(choices=["fp16","fp32"], value="fp16" if configs.get("fp16", False) else "fp32", label=translations["precision"], info=translations["precision_info"], interactive=True) fp_button = gr.Button(translations["update_precision"], variant="secondary", scale=2) with gr.Column(): font_choice = gr.Textbox(label=translations["font"], info=translations["font_info"], value=font, interactive=True) font_button = gr.Button(translations["change_font"]) with gr.Row(): with gr.Column(): with gr.Accordion(translations["stop"], open=False): separate_stop = gr.Button(translations["stop_separate"]) convert_stop = gr.Button(translations["stop_convert"]) create_dataset_stop = gr.Button(translations["stop_create_dataset"]) audioldm2_stop = gr.Button(translations["stop_audioldm2"]) with gr.Accordion(translations["stop_training"], open=False): model_name_stop = gr.Textbox(label=translations["modelname"], info=translations["training_model_name"], value="", placeholder=translations["modelname"], interactive=True) preprocess_stop = gr.Button(translations["stop_preprocess"]) extract_stop = gr.Button(translations["stop_extract"]) train_stop = gr.Button(translations["stop_training"]) with gr.Row(): toggle_button.click(fn=None, js="() => {document.body.classList.toggle('dark')}") fp_button.click(fn=change_fp, inputs=[fp_choice], outputs=[fp_choice]) with gr.Row(): change_lang.click(fn=change_language, inputs=[language_dropdown], outputs=[]) changetheme.click(fn=change_theme, inputs=[theme_dropdown], outputs=[]) font_button.click(fn=change_font, inputs=[font_choice], outputs=[]) with gr.Row(): change_lang.click(fn=None, js="setTimeout(function() {location.reload()}, 15000)", inputs=[], outputs=[]) changetheme.click(fn=None, js="setTimeout(function() {location.reload()}, 15000)", inputs=[], outputs=[]) font_button.click(fn=None, js="setTimeout(function() {location.reload()}, 15000)", inputs=[], outputs=[]) with gr.Row(): separate_stop.click(fn=lambda: stop_pid("separate_pid", None, False), inputs=[], outputs=[]) convert_stop.click(fn=lambda: stop_pid("convert_pid", None, False), inputs=[], outputs=[]) create_dataset_stop.click(fn=lambda: stop_pid("create_dataset_pid", None, False), inputs=[], outputs=[]) with gr.Row(): preprocess_stop.click(fn=lambda model_name_stop: stop_pid("preprocess_pid", model_name_stop, False), inputs=[model_name_stop], outputs=[]) extract_stop.click(fn=lambda model_name_stop: stop_pid("extract_pid", model_name_stop, False), inputs=[model_name_stop], outputs=[]) train_stop.click(fn=lambda model_name_stop: stop_pid("train_pid", model_name_stop, True), inputs=[model_name_stop], outputs=[]) with gr.Row(): audioldm2_stop.click(fn=lambda: stop_pid("audioldm2_pid", None, False), inputs=[], outputs=[]) with gr.Row(): gr.Markdown(translations["terms_of_use"]) with gr.Row(): gr.Markdown(translations["exemption"]) logger.info(translations["start_app"]) logger.info(translations["set_lang"].format(lang=language)) port = configs.get("app_port", 7860) for i in range(configs.get("num_of_restart", 5)): try: app.queue().launch( favicon_path=os.path.join("assets", "ico.png"), server_name=configs.get("server_name", "0.0.0.0"), server_port=port, show_error=configs.get("app_show_error", False), inbrowser="--open" in sys.argv, share="--share" in sys.argv, allowed_paths=allow_disk ) break except OSError: logger.debug(translations["port"].format(port=port)) port -= 1 except Exception as e: logger.error(translations["error_occurred"].format(e=e)) sys.exit(1)