File size: 8,288 Bytes
fa7e3c5
 
 
 
 
 
c92d933
fa7e3c5
 
 
1794ce2
fa7e3c5
 
 
6d70605
fa7e3c5
 
 
6d70605
 
 
 
 
 
fa7e3c5
 
1794ce2
6d70605
 
 
 
 
 
 
fa7e3c5
 
 
 
 
 
 
 
 
 
 
 
1794ce2
 
fa7e3c5
1794ce2
fa7e3c5
 
 
 
 
 
 
 
 
 
 
 
 
 
6d70605
fa7e3c5
 
 
 
 
 
 
1794ce2
 
 
fa7e3c5
 
 
 
 
6d70605
1794ce2
 
 
 
 
fa7e3c5
 
 
 
 
 
 
 
 
 
1794ce2
 
 
fa7e3c5
 
 
 
 
 
1794ce2
fa7e3c5
 
 
 
 
 
 
 
 
 
 
 
1794ce2
fa7e3c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1794ce2
 
 
fa7e3c5
 
 
6d70605
fa7e3c5
 
 
 
 
 
 
 
 
 
 
 
 
 
1794ce2
fa7e3c5
 
 
 
1794ce2
fa7e3c5
 
 
 
1794ce2
fa7e3c5
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import torch
from threading import Thread

phi4_model_path = "microsoft/Phi-4-reasoning-plus"

device = "cuda:0" if torch.cuda.is_available() else "cpu"

phi4_model = AutoModelForCausalLM.from_pretrained(phi4_model_path, device_map="auto", torch_dtype="auto")
phi4_tokenizer = AutoTokenizer.from_pretrained(phi4_model_path)

@spaces.GPU(duration=60)
def generate_response(user_message, max_tokens, temperature, top_k, top_p, repetition_penalty, history_state):
    if not user_message.strip():
        return history_state, history_state
        
    # Phi-4 model settings
    model = phi4_model
    tokenizer = phi4_tokenizer
    start_tag = "<|im_start|>"
    sep_tag = "<|im_sep|>"
    end_tag = "<|im_end|>"

    # Recommended prompt settings by Microsoft
    system_message = "Your role as an assistant involves thoroughly exploring questions through a systematic thinking process before providing the final precise and accurate solutions. This requires engaging in a comprehensive cycle of analysis, summarizing, exploration, reassessment, reflection, backtracing, and iteration to develop well-considered thinking process. Please structure your response into two main sections: Thought and Solution using the specified format: <think> {Thought section} </think> {Solution section}. In the Thought section, detail your reasoning process in steps. Each step should include detailed considerations such as analysing questions, summarizing relevant findings, brainstorming new ideas, verifying the accuracy of the current steps, refining any errors, and revisiting previous steps. In the Solution section, based on various attempts, explorations, and reflections from the Thought section, systematically present the final solution that you deem correct. The Solution section should be logical, accurate, and concise and detail necessary steps needed to reach the conclusion. Now, try to solve the following question through the above guidelines:"
    prompt = f"{start_tag}system{sep_tag}{system_message}{end_tag}"
    for message in history_state:
        if message["role"] == "user":
            prompt += f"{start_tag}user{sep_tag}{message['content']}{end_tag}"
        elif message["role"] == "assistant" and message["content"]:
            prompt += f"{start_tag}assistant{sep_tag}{message['content']}{end_tag}"
    prompt += f"{start_tag}user{sep_tag}{user_message}{end_tag}{start_tag}assistant{sep_tag}"

    inputs = tokenizer(prompt, return_tensors="pt").to(device)

    do_sample = not (temperature == 1.0 and top_k >= 100 and top_p == 1.0)

    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)

    # sampling techniques
    generation_kwargs = {
        "input_ids": inputs["input_ids"],
        "attention_mask": inputs["attention_mask"],
        "max_new_tokens": int(max_tokens),
        "do_sample": True,
        "temperature": 0.8,
        "top_k": int(top_k),
        "top_p": 0.95,
        "repetition_penalty": repetition_penalty,
        "streamer": streamer,
    }

    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    # Stream the response
    assistant_response = ""
    new_history = history_state + [
        {"role": "user", "content": user_message},
        {"role": "assistant", "content": ""}
    ]
    for new_token in streamer:
        cleaned_token = new_token.replace("<|im_start|>", "").replace("<|im_sep|>", "").replace("<|im_end|>", "")
        assistant_response += cleaned_token
        new_history[-1]["content"] = assistant_response.strip()
        yield new_history, new_history

    yield new_history, new_history

example_messages = {
    "Math problem": "Solve for x: 3x^2 + 6x - 9 = 0",
    "Algorithmic task": "Write a Python function to find the longest common subsequence of two strings.",
    "Reasoning puzzle": "There are 5 houses in a row, each with a different color. The person in each house has a different nationality, pet, drink, and cigarette brand. Given that: The Brit lives in the red house. The Swede keeps dogs. The Dane drinks tea. The green house is on the left of the white house. The green house owner drinks coffee. The person who smokes Pall Mall keeps birds. The owner of the yellow house smokes Dunhill. The man living in the center house drinks milk. The Norwegian lives in the first house. The man who smokes Blend lives next to the one who keeps cats. The man who keeps horses lives next to the man who smokes Dunhill. The owner who smokes Blue Master drinks beer. The German smokes Prince. The Norwegian lives next to the blue house. The man who smokes Blend has a neighbor who drinks water. Who owns the fish?"
}

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        # Phi-4-reasoning-plus Chatbot 
        Welcome to the Phi-4-reasoning-plus Chatbot! This model is designed for advanced reasoning tasks and structured thinking. The model will provide responses with two sections:
        1. **Thought section**: A detailed reasoning chain showing step-by-step analysis
        2. **Solution section**: A concise, accurate final answer
        
        Adjust the settings on the left to customize the model's responses. For complex queries, consider increasing the max tokens.
        """
    )
    
    history_state = gr.State([])

    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("### Settings")
            max_tokens_slider = gr.Slider(
                minimum=64,
                maximum=32768,
                step=1024,
                value=4096,
                label="Max Tokens"
            )
            with gr.Accordion("Advanced Settings", open=False):
                temperature_slider = gr.Slider(
                    minimum=0.1,
                    maximum=2.0,
                    value=0.8,
                    label="Temperature"
                )
                top_k_slider = gr.Slider(
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=50,
                    label="Top-k"
                )
                top_p_slider = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.95,
                    label="Top-p"
                )
                repetition_penalty_slider = gr.Slider(
                    minimum=1.0,
                    maximum=2.0,
                    value=1.0,
                    label="Repetition Penalty"
                )
        
        with gr.Column(scale=4):
            chatbot = gr.Chatbot(label="Chat", type="messages")
            with gr.Row():
                user_input = gr.Textbox(
                    label="Your message",
                    placeholder="Type your message here...",
                    scale=3
                )
                submit_button = gr.Button("Send", variant="primary", scale=1)
                clear_button = gr.Button("Clear", scale=1)
            gr.Markdown("**Try these examples:**")
            with gr.Row():
                example1_button = gr.Button("Math problem")
                example2_button = gr.Button("Algorithmic task")
                example3_button = gr.Button("Reasoning puzzle")

    submit_button.click(
        fn=generate_response,
        inputs=[user_input, max_tokens_slider, temperature_slider, top_k_slider, top_p_slider, repetition_penalty_slider, history_state],
        outputs=[chatbot, history_state]
    ).then(
        fn=lambda: gr.update(value=""),
        inputs=None,
        outputs=user_input
    )

    clear_button.click(
        fn=lambda: ([], []),
        inputs=None,
        outputs=[chatbot, history_state]
    )

    example1_button.click(
        fn=lambda: gr.update(value=example_messages["Math problem"]),
        inputs=None,
        outputs=user_input
    )
    example2_button.click(
        fn=lambda: gr.update(value=example_messages["Algorithmic task"]),
        inputs=None,
        outputs=user_input
    )
    example3_button.click(
        fn=lambda: gr.update(value=example_messages["Reasoning puzzle"]),
        inputs=None,
        outputs=user_input
    )

demo.launch(ssr_mode=False)