Neomindapp commited on
Commit
f3c0815
·
verified ·
1 Parent(s): b715001

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -0
app.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import gradio as gr
3
+ from transformers import TTSConfig, TTSForConditionalGeneration
4
+ import numpy as np
5
+ import soundfile as sf
6
+
7
+ # Load your model and configuration
8
+ def load_model(model_path, config_path):
9
+ config = TTSConfig.from_json_file(config_path)
10
+ model = TTSForConditionalGeneration.from_pretrained(model_path, config=config)
11
+ model.eval()
12
+ return model
13
+
14
+ # Define the path to your model and config
15
+ MODEL_PATH = 'path/to/best_model.pth'
16
+ CONFIG_PATH = 'path/to/config.json'
17
+
18
+ model = load_model(MODEL_PATH, CONFIG_PATH)
19
+
20
+ # Define the function to generate speech
21
+ def generate_speech(text):
22
+ # Convert text to input format
23
+ inputs = tokenizer(text, return_tensors="pt")
24
+
25
+ with torch.no_grad():
26
+ # Generate speech
27
+ outputs = model.generate(inputs['input_ids'])
28
+
29
+ # Convert outputs to numpy array (audio waveform)
30
+ # This conversion depends on your model
31
+ audio_waveform = outputs.squeeze().numpy()
32
+
33
+ # Save the waveform to a temporary file
34
+ temp_file = 'temp.wav'
35
+ sf.write(temp_file, audio_waveform, 22050) # Adjust sample rate if necessary
36
+
37
+ return temp_file
38
+
39
+ # Define Gradio interface
40
+ interface = gr.Interface(
41
+ fn=generate_speech,
42
+ inputs="text",
43
+ outputs="audio",
44
+ title="Text-to-Speech Model",
45
+ description="Generate speech from text using your TTS model."
46
+ )
47
+
48
+ # Launch the Gradio interface
49
+ if __name__ == "__main__":
50
+ interface.launch()